1,860
Views
6
CrossRef citations to date
0
Altmetric
Articles

High sensitivity of roots to salt stress as revealed by novel tip bioassay in wheat seedlings

ORCID Icon, , , , , , , , & show all
Pages 238-246 | Received 01 Oct 2020, Accepted 13 Nov 2020, Published online: 30 Dec 2020

References

  • Hanin M, Ebel C, Ngom M, et al. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci. 2016;7:1787. https://doi.org/10.3389/fpls.2016.01787.
  • El-Hendawy SE, Hassan WM, Al-Suhaibani NA, et al. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front Plant Sci. 2017;8:435. https://doi.org/10.3389/fpls.2017.00435.
  • Genc Y, Taylor J, Lyons G, et al. Bread wheat with high salinity and sodicity tolerance. Front Plant Sci. 2019;10:1280. https://doi.org/10.3389/fpls.2019.01280.
  • Munns R, Schachtman DP, Condon AG. The significance of the two-phase growth response to salinity in wheat and barley. Funct Plant Biol. 1995;22(4):561–569. https://doi.org/10.1071/PP9950561.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681.
  • Negrão S, Schmöckel SM, Tester M. Evaluating physiological responses of plants to salinity stress. Ann Bot. 2017;119(1):1–11. https://doi.org/10.1093/aob/mcw191.
  • Bai J, Yan W, Wang Y, et al. Screening oat genotypes for tolerance to salinity and alkalinity. Front Plant Sci. 2018;9:1302. https://doi.org/10.3389/fpls.2018.01302.
  • Moghimi A, Yang C, Miller ME, et al. A novel approach to assess salt stress tolerance in wheat using hyperspectral imaging. Front Plant Sci. 2018;9:1182. https://doi.org/10.3389/fpls.2018.01182.
  • Wu H, Shabala L, Liu X, et al. Linking salinity stress tolerance with tissue-specific Na(+) sequestration in wheat roots. Front Plant Sci. 2015;6:71. https://doi.org/10.3389/fpls.2015.00071.
  • Duan L, Sebastian J, Dinneny J. Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. In: Methods in Molecular Biology, Estevez JM, editor. Plant cell expansion: methods and protocols, methods in molecular biology, Springer. Vol. 1242; 2015. https://doi.org/10.1007/978-1-4939-1902-4_10.
  • Tsunewaki K. In: Tsunewaki K, editor. Genetic diversity of the cytoplasm in Triticum and Aegilops. Tokyo, Japan; Japan Society for the Promotion of Science; 1980, p. 290.
  • Takenaka S, Yamamoto S, Nakamura C. Genetic diversity of submergence stress response in cytoplasms of the Triticum-Aegilops complex. Sci Rep. 2018;8(1):16267. https://doi.org/10.1038/s41598-018-34682-3.
  • Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant. 2013;48(3):452–458. https://doi.org/10.1038/bmt.2012.244.
  • Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypothesis. Plant Cell Environ. 1993;16(1):15–24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x.
  • Bilkis A, Islam MR, Hafiz MHR, et al. Effect of NaCl induced salinity on some physiological and agronomic traits of wheat. Pak J Bot. 2016;48:455–460.
  • Gasimova F, Azizov I. Evaluation of salt tolerance in bread wheat (Triticum aestivum L.) genotypes during early ontogenesis. Emer Life Sci Rep. 2016;2:21–25.
  • Soares ALC, Geilfus C-M, Carpentier SC. Genotype-specific growth and proteomic responses of maize toward salt stress. Front Plant Sci. 2018;9:661. https://doi.org/10.3389/fpls.2018.00661.
  • Bacu A, Ibro V, Nushi M. Compared salt tolerance of five local wheat (Triticum aestivum L.) cultivars of Albania based on morphology, pigment synthesis and glutathione content. EuroBiotech J. 2020;4:1. https://doi.org/10.2478/ebtj-2020-0006.
  • Jia W, Wang Y, Zhang S, et al. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot. 2002;53(378):2201–2206. https://doi.org/10.1093/jxb/erf079.
  • Islam A, Malik AI, Islam AKMR, et al. Salt tolerance in a Hordeum marinum–Triticum aestivum amphiploid, and its parents. J Exp Bot. 2007;58(5):1219–1229. https://doi.org/10.1093/jxb/erl293.
  • Shahzad A, Ahmad M, Iqbal M, et al. Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genet Mol Res. 2012;11(1):679–692. https://doi.org/10.4238/2012.March.19.2.
  • Hussain B, Khan AS, Ali Z. Genetic variation in wheat germplasm for salinity tolerance at seedling stage: improved statistical inference. Turk J Agric For. 2015;39:182–192. https://doi.org/10.3906/tar-1404-114.
  • Hasan MM, Baque MA, Habib MA, et al. Screening of salt tolerance capability of wheat genotypes under salt stress condition. UJAR. 2017;5(4):235–249.
  • James RA, Rivelli AR, Munns R, et al. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol. 2002;29(12):1393–1403.
  • Nicolas ME, Munns R, Samarakoon AB, et al. Elevated CO2 improves the growth of wheat under salinity. Aust J Plant Physiol. 1993;20:349–360.
  • Silva P, Geros H. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav. 2009;4(8):718–726. https://doi.org/10.4161/psb.4.8.9236.
  • Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 2006;57(5):1025–1043. https://doi.org/10.1093/jxb/erj100.
  • Wu H. Plant salt tolerance and Na+ sensing and transport. Crop J. 2018;6(3):215–226. https://doi.org/10.1016/j.cj.2018.01.003.
  • Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. J Exp Bot. 2017;68(12):3071–3089. https://doi.org/10.1093/jxb/erx127.
  • Fu Y, Yang Y, Chen S, et al. Arabidopsis IAR4 modulates primary root growth under salt stress through ROS-mediated modulation of auxin distribution. Front Plant Sci. 2019;10:522. https://doi.org/10.3389/fpls.2019.00522.
  • Galvan-Ampudia CS, Julkowska MM, Darwish E, et al. Halotropism is a response of plant roots to avoid a saline environment. Curr Biol. 2013;23(20):2044–2050. http://dx.doi.org/10.1016/j.cub.2013.08.042.
  • Robin AHK, Matthew C, Uddin MJ, et al. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J Exp Bot. 2016;67(12):3719–3729. https://doi.org/10.1093/jxb/erw064.