3,898
Views
8
CrossRef citations to date
0
Altmetric
Articles

Evaluation of an enclosed air-lift photobioreactor (ALPBR) for biomass and lipid biosynthesis of microalgal cells grown under fluid-induced shear stress

, , , ORCID Icon, &
Pages 139-149 | Received 03 Sep 2020, Accepted 23 Nov 2020, Published online: 17 Dec 2020

References

  • Adeniyi OM, Azimov U, Burluka A. Algae biofuel: current status and future applications. Renewable Sustainable Energy Rev. 2018;90:316–335.
  • Nascimento IA, Marques SSI, Cabanelas ITD, et al. Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg Res. 2013;6(1):1–13.
  • Carvalho A, Silva S, Baptista JM, et al. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol. 2011;89(5):1275–1288.
  • Sawant S, Khadamkar H, Mathpati C, et al. Computational and experimental studies of high depth algal raceway pond photo-bioreactor. Renewable Energy. 2018;118:152–159.
  • Patel B, Tamburic B, Zemichael FW, et al. Algal biofuels: a credible prospective? ISRN Renewable Energy. 2012;2012:1–14.
  • Fan J, Huang J, Li Y, et al. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresour Technol. 2012;112:206–211.
  • Wang T, Tian X, Liu T, et al. A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochem. 2017;60:74–83.
  • Janssen M, Tramper J, Mur LR, et al. Enclosed photo bioreactors: light regime photosynthetic efficiency, scale-up and future prospect. Biotechnol Bioeng. 2003;81(2):193–210.
  • Vargas S, Gómez Pérez CA, Espinosa J. A method for the design of a continuous microalgae culture photobioreactor in series with recirculation system, CT y F - Ciencia. CT&F Cienc Tecnol Futuro. 2017;7(1):101–116.
  • Amaro H, Guedes A, Malcata F. Advances and perspectives in using microalgae to produce biodiesel. Appl Energy . 2011;88(10):3402–3410.
  • González-Fernández C, Molinuevo-Salces B, García-González M. Open and enclosed photobioreactors comparison in terms of organic matter utilization, biomass chemical profile and photosynthetic efficiency. Ecol Eng. 2010;36(10):1497–1501.
  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54(4):621–639.
  • Markov S. Hydrogen production in bioreactors: current trends. Energy Procedia. 2012;29:394–400.
  • Schenk P, Thomas-Hall S, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res. 2008;1(1):20–43.
  • Chen M, Tang H, Ma H, et al. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol. 2011;102(2):1649–1655.
  • Eixler S, Karsten U, Selig U. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia. 2006;45(1):53–60.
  • Pudaite JL. Effects of the absence of nitrogen and phosphorus on the growth rate and total chlorophyll content of a freshwater microalgae Scenedesmus sp. Science Vision. 2015;15(3):132–137.
  • Guschina I, Harwood J. Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res. 2006;45(2):160–186.
  • Xia L, Rong J, Yang H, et al. NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans. Bioresour Technol. 2014;161:402–409.
  • Xiong W, Gao C, Yan D, et al. Double CO(2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol. 2010;101(7):2287–2293.
  • Zheng Y, Li T, Yu X, et al. High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy. 2013;108:281–287.
  • Courchesne N, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol. 2009;141(1–2):31–41.
  • Michels MHA, van der Goot AJ, Vermuë MH, et al. Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump. J Appl Phycol. 2016;28(1):53–62.
  • Wang C, Lan C. Effects of shear stress on microalgae – a review. Biotechnol Adv. 2018;36(4):986–1002.
  • Gallardo-Rodríguez JJ, López-Rosales L, Sánchez-Mirón A, et al. New insights into shear-sensitivity in dinoflagellate microalgae. Bioresour Technol. 2016;200:699–705.
  • López-Rosales L, García-Camacho F, Sánchez-Mirón A, et al. Modeling shear-sensitive dinoflagellate microalgae growth in bubble column photobioreactors. Bioresour Technol. 2017;245(Pt A):250–257.
  • Ge Y, Liu J, Tian G. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour Technol . 2011;102(1):130–134.
  • Ranganathan P, Savithri S. Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics. Chem Eng Sci. 2011;66(14):3108–3124.
  • Bicas JL, Kleinegris DMM, Barbosa MJ. Use of methylene blue uptake for assessing cell viability of colony-forming microalgae. Algal Research. 2015;8:174–180.
  • Wang T, Ge H, Liu T, et al. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. J Biotechnol. 2016;228:18–27.
  • Aslanbay Guler B, Deniz I, Demirel Z, et al. Computational fluid dynamics simulation in scaling-up of airlift photobioreactor for astaxanthin production. J Biosci Bioeng. 2020;129(1):86–92.
  • Sadeghizadeh A, Rahimi R, Dad FF. Computational fluid dynamics modeling of carbon dioxide capture from air using biocatalyst in an airlift reactor. Bioresour Technol. 2018;253:154–164.
  • Sánchez Mirón A, Cerón García MC, García Camacho F, et al. Mixing in bubble column and airlift reactors. Chem Eng Res Des. 2004;82(10):1367–1374.
  • Sánchez Mirón A, García Camacho F, Contreras Gómez A, et al. Bubble-column and airlift photobioreactors for algal culture. AIChE J. 2000;46(9):1872–1887.
  • Aslanbay Guler B, Deniz I, Demirel Z, et al. Evaluation of scale-up methodologies and computational fluid dynamics simulation for fucoxanthin production in airlift photobioareactor. Asia-Pacific J Chem Eng. 2020; e2532.
  • Gao X, Kong B, Vigil RD. Multiphysics simulation of algal growth in an airlift photobioreactor: effects of fluid mixing and shear stress. Bioresour Technol. 2018;251:75–83.
  • Tong Z-X, Li M-J, Yan J-J, et al. A theoretical analysis of the hydrodynamic influence on the growth of microalgae in the photobioreactors with simple growth kinetics. Int J Heat Mass Transf. 2020;158:119986.
  • Michels MHA, van der Goot AJ, Norsker N-H, et al. Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng. 2010;33(8):921–927.
  • García Camacho F, Gallardo Rodríguez JJ, Sánchez Mirón A, et al. Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks: implications in bioprocess engineering. Process Biochem. 2007;42(11):1506–1515.
  • Gao X, Kong B, Vigil RD. CFD simulation of bubbly turbulent Tayor–Couette flow. Chin J Chem Eng. 2016;24(6):719–727.
  • Gao X, Kong B, Vigil RD. Characteristic time scales of mixing, mass transfer and biomass growth in a Taylor vortex algal photobioreactor. Bioresour Technol. 2015;198:283–291.
  • Luo H-P, Al-Dahhan MH. Local gas holdup in a draft tube airlift bioreactor. Chem Eng Sci. 2010;65(15):4503–4510.
  • Yang Z, Pei H, Han F, et al. Effects of air bubble size on algal growth rate and lipid accumulation using fine-pore diffuser photobioreactors. Algal Research. 2018;32:293–299.
  • Barahoei M, Hatamipour MS, Afsharzadeh S. CO2 capturing by chlorella vulgaris in a bubble column photo-bioreactor; effect of bubble size on CO2 removal and growth rate. J Co2 Util. 2020;37:9–19.
  • El Shenawy EA, Elkelawy M, Bastawissi HA-E, et al. Effect of cultivation parameters and heat management on the algae species growth conditions and biomass production in a continuous feedstock photobioreactor. Renewable Energy. 2020;148:807–815.
  • Pawar SB. Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate. Bioprocess Biosyst Eng. 2018;41(1):31–45.
  • Barbosa MJ, Hadiyanto H, Wijffels R. Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnology and Bioengineering. 2004;85:78–85.
  • Coşgun A, Günay ME, Yıldırım R. Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning. Renewable Energy. 2021;163:1299–1317.
  • Caporgno MP, Haberkorn I, Böcker L, et al. Cultivation of Chlorella protothecoides under different growth modes and its utilisation in oil/water emulsions. Bioresour Technol. 2019;288:121476
  • Caporgno MP, Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr. 2018;5:58(
  • Canelli G, Neutsch L, Carpine R, et al. Chlorella vulgaris in a heterotrophic bioprocess: study of the lipid bioaccessibility and oxidative stability. Algal Research. 2020;45:101754.
  • Morales-Sánchez D, Martinez-Rodriguez OA, Martinez A. Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. J Chem Technol Biotechnol. 2017;92(5):925–936.