2,238
Views
10
CrossRef citations to date
0
Altmetric
Articles

Expression analysis of miRNAs and their targets related to salt stress in Solanum lycopersicum H-2274

, , &
Pages 275-282 | Received 10 Nov 2020, Accepted 28 Dec 2020, Published online: 12 Jan 2021

References

  • Gravitol C, Hemerly AS, Ferreira PC. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochimica et Biophysica Acta. 2012;1819(2):176–185.
  • Suzuki N, Rivero RM, Shulaev V, et al. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43.
  • Jatan R, Lata C. Role of MicroRNAs in abiotic and biotic stress resistance in plants. Proc Indian Natn Sci Acad. 2019;85(3):553–567.
  • Saini A, Li Y, Jagadeeswaran G, et al. 2012. Role of microRNAs in plant adaptation to environmental stresses. In Sunkar R, editor. MicroRNAs in plant development and stress responses, signaling and communication in plants. Vol. 15. Berlin: Springer.
  • Candar-Cakir B, Arican E, Zhang B. Small RNA and degradome deep sequencing reveals drought‐and tissue‐specific micrornas and their important roles in drought‐sensitive and drought‐tolerant tomato genotypes. Plant Biotechnol J. 2016;14(8):1727–1746. https://doi.org/10.1111/pbi.12533.
  • Monteiro CC, Carvalho RF, Gratão PL, Carvalho G, et al. Biochemical responses of the ethylene-insensitive never ripe tomato mutant subjected to cadmium and sodium stresses. Environ Exp Bot. 2011;71(2):306–320.
  • Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal Behav. 2007;2(3):135–138.
  • Zhu J, Fu X, Koo YD, et al. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ıon homeostasis and the oxidative stress response. Mol Cell Biol. 2007;27(14):5214–5224.
  • Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol. 2005;16(2):123–132.
  • Phillips JR, Dalmay T, Bartels D. The role of small RNAs in abiotic stress. FEBS Lett. 2007;581(19):3592–3597.
  • Sunkar R, Chinnusamy V, Zhu J, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 2007;12(7):301–309.
  • Sunkar R, Zhou X, Zheng Y, et al. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 2008;8:25.
  • Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun. 2007;354(2):585–590.
  • Zhou X, Wang G, Sutoh K, et al. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta. 2008;1779(11):780–788.
  • Patel P, Yadav K, Ganapathi TR. Small and hungry: microRNAs in micronutrient homeostasis of plants. Microrna. 2017;6(1):22–41.
  • Liu HH, Tian X, Li YJ, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14(5):836–843.
  • Kopriva S, Mugford SG, Baraniecka P, et al. Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Front Plant Sci. 2012;3:163.
  • Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18(8):2051–2065.
  • Zhou L, Liu Y, Liu Z, et al. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010;61(15):4157–4168.
  • Zhou X, Khare T, Kumar V. Recent trends and advances in identification and functional characterization of plant miRNAs. Acta Physiol Plant. 2020;42(2):25. https://doi.org/10.1007/s11738-020-3013-8.
  • Rai AC, Singh M, Shah K. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry. 2013;85:44–50.
  • Sekmen A, Demiral T, Tosun N, et al. Tuz Stresi Uygulanan Domates Bitkilerinin Bazı Fizyolojik Özellikleri ve Toplam Protein Miktarı Üzerine Bitki Aktivatörünün Etkisi [Effect of plant activator on some physiological properties and total protein amount of tomato plants exposed to salt stress]. Ege Üniversitesi Ziraat Fakültesi Dergisi. 2005;42(1):85–95. https://dergipark.org.tr/tr/pub/zfdergi/issue/5081/69415.
  • Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497.
  • Dai X, Zhuang Z, Zhao PX. Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform. 2011;12(2):115–121.
  • Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011;39(Web Server issue):W155–9.
  • Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server (2017 release. Nucleic Acids Res. 2018. 46(W1):W49-W54. doi: 10.1093/nar/gky316.
  • Fernandez-Pozo N, Menda N, Edwards JD, et al. The Sol Genomics Network (SGN)-from genotype to phenotype to breeding . Nucleic Acids Res. 2015;43(Database issue):D1036–41.
  • Patel P, Yadav K, Ganapathi TR, et al. 2019. Plant miRNAome: Cross talk in abiotic stressful times. In: Rajpal et al., editors. Genetic enhancement of crops for tolerance to abiotic stress: mechanisms and approaches. Vol. I, Sustainable Development and Biodiversity 20. Springer Nature Switzerland AG 2019. https://doi.org/10.1007/978-3-319-91956-0_2. Springer International Publishing
  • Bhat K, Mondal TK, Gaikwad AB, et al. Genome-wide identification of drought-responsive miRNAs in grass pea (Lathyrus sativus L). Plant Gene. 2020;21:100210. https://doi.org/10.1016/j.plgene.2019.100210.
  • Ding Y, Tao Y, Zhu C. Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot. 2013;64(11):3077–3086.
  • Akbudak MA, Filiz E. Whirly (Why) transcription factors in tomato (Solanum lycopersicum L.): genome-wide identification and transcriptional profiling under drought and salt stresses. Mol Biol Rep. 2019;46(4):4139–4150. https://doi.org/10.1007/s11033-019-04863-y.
  • Maathuis FJM, Ahmad I, Patishtan J. Regulation of Na(+) fluxes in plants. Front Plant Sci. 2014;5:467.
  • Zhang F, Zhu G, Du L, et al. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep. 2016;6:20582.
  • Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol. 2009;25:21–44.
  • Kulcheski FR, de Oliveira LF, Molina LG, et al. Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genom. 2011;12(307). doi: 10.1186/1471-2164-12-307.
  • López-Galiano MJ, García-Robles I, González-Hernández AI, et al. Expression of miR159 ıs altered in tomato plants undergoing drought stress. Plants. 2019;8(7):201.
  • Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004;16(8):2001–2019.
  • Xie F, Wang Q, Sun R, et al. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot. 2015;66(3):789–804.
  • Klee HJ, Giovannoni JJ. Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet. 2011;45:41–59.
  • Ben Abdallah S, Aung B, Amyot L, et al. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant. 2016;38(3):72.
  • Li H, Yan S, Zhao L, et al. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol. 2014;14:105.
  • Korir NK, Li X, Xin S, et al. Characterization and expression profiling of selected microRNAs in tomato (Solanum lycopersicon) 'Jiangshu14'. Mol Biol Rep. 2013;40(5):3503–3521.
  • Esposito S, Aversano R, Bradeen JM, et al. Deep-sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. Plant Biol. 2018. 22(S1):133-142.
  • Azahar I, Ghosh S, Adhikari A, et al. Comparative analysis of maize root sRNA transcriptome unveils the regulatory roles of miRNAs in submergence stress response mechanis. Environ Exp Bot. 2020;171:103924. https://doi.org/10.1016/j.envexpbot.2019.103924.
  • Cui L, Zheng F, Wang J, et al. miR156a-targeted SBP‐Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. Plant Biotechnol J. 2020;18(8):1670–1682. https://doi.org/10.1111/pbi.13331.
  • Xie F, Frazier TP, Zhang B. Identification, characterization and expression analysis of MicroRNAs and their targets in the potato (Solanum tuberosum). Gene. 2011;473(1):8–22. https://doi.org/10.1016/j.gene.2010.09.007.
  • Casati P. Analysis of UV-B regulated miRNAs and their targets in maize leaves. Plant Signal Behav. 2013;8(10):e26758.
  • Javed M, Sinha A, Shukla LI. Evaluation of mature miR398 family, expression analysis and the post-transcriptional regulation evidence in gamma-irradiated and nitrogen-stressed Medicago sativa seedlings. Int J Radiat Biol. 2018;95(5):585–596.
  • Zhao J, He Q, Chen G, et al. Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci. 2016;7:1213
  • Zhou ZS, Zeng HQ, Liu ZP, et al. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ. 2012;35(1):86–99.
  • Feng J, Liu S, Wang M, et al. Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Planta. 2014;240(6):1335–1352. https://doi.org/10.1007/s00425-014-2158-3.
  • Paul S, de la Fuente-Jiménez JL, Manriquez CG, et al. Identification, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs. 3 Biotech. 2020;10(1):25.
  • Kravchik M, Stav R, Belausov E, et al. Functional characterization of microRNA171 family in tomato. Plants. 2019;8(1):10.
  • Chauhan S, Yogindran S, Rajam MV. Role of miRNAs in biotic stress reactions in plants. Ind J Plant Physiol. 2017;22(4):514–529. https://doi.org/10.1007/s40502-017-0347-3.
  • Fahlgren N, Howell MD, Kasschau KD, et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One. 2007;2(2):e219.
  • Tandon G, Singh S, Kaur S, et al. Computational deciphering of biotic stress associated genes in tomato (Solanum lycopersicum). Genom Data. 2017;14:82–90.
  • Zuo J, Wang Y, Liu H, et al. MicroRNAs in tomato plants. Sci China Life Sci. 2011;54(7):599–605.