1,851
Views
3
CrossRef citations to date
0
Altmetric
Articles

In silico prediction of type I PKS gene modules in nine lichenized fungi

ORCID Icon, &
Pages 358-365 | Received 24 Nov 2020, Accepted 18 Jan 2021, Published online: 07 Feb 2021

References

  • Ranković B, Kosanić M, Manojlović N, et al. Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Med Chem Res. 2014;23(1):408–416.
  • Shrestha G, St. Clair LL. Lichens: a promising source of antibiotic and anticancer drugs. Phytochem Rev. 2013;12(1):229–244.
  • Huneck S. The Significance of Lichens and Their Metabolites. Naturwissenschaften. 1999;86(12):559–570.
  • Cansaran D, Atakol O, Halici MG, et al. HPLC analysis of usnic acid in someramalina. species from anatolia and investigation of their antimicrobial activities. Pharm Biol. 2007;45(1):77–81.
  • Galanty A, Koczurkiewicz P, Wnuk D, et al. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicol in Vitro. 2017;40:161–169.
  • Karagöz A, Doğruöz N, Zeybek Z, et al. Antibacterial activity of some lichen extracts. J Med Plants Res. 2009;3(12):1034–1039.
  • Ristic S Fau - Rankovic B, Rankovic B, Fau - Kosanic M, Kosanic M, et al. Biopharmaceutical Potential of Two Ramalina Lichens and their Metabolites. CPB. 2016; 17(7):651–658.
  • Elix JA, Stocker-Wörgötter E. Biochemistry and secondary metabolites. In: Nash IIITH, editor. Lichen Biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 104–133.
  • Chooi Y-H, Stalker DM, Davis MA, et al. Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycol Res. 2008;112(Pt 2):147–161.
  • Macheleidt J, Mattern DJ, Fischer J, et al. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet. 2016;50:371–392.
  • Abdel-Hameed M, Bertrand RL, Piercey-Normore MD, et al. Identification of 6-Hydroxymellein Synthase and Accessory Genes in the Lichen Cladonia uncialis. J Nat Prod. 2016;79(6):1645–1650.
  • Fatema U, Broberg A, Jensen DF, et al. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Sci Rep. 2018;8(1):15009
  • Stocker-Worgotter E. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep. 2008;25(1):188–200.
  • Wang Y, Kim JA, Cheong YH, et al. Isolation and characterization of a non-reducing polyketide synthase gene from the lichen-forming fungus Usnea longissima. Mycol Progress. 2012;11(1):75–83.
  • Sabatini M, Comba S, Altabe S, et al. Biochemical characterization of the minimal domains of an iterative eukaryotic polyketide synthase. Febs J. 2018;285(23):4494–4511.
  • Deduke C, Timsina B. Effect of environmental change on secondary metabolite production in lichen-forming fungi. In: Young S. editor. International perspective on global environmental change. 2012. p. 197–230. IntechOpen
  • Shukla V, Pant J, G, Rawat MSM. Lichens as a potential natural source of bioactive compounds: A review. Phytochem Rev. 2010;9(2):303–314.
  • Albarano L, Esposito R, Ruocco N, et al. Genome mining as new challenge in natural products discovery. Mar Drugs. 2020;18(4):199.
  • Weber T. Introduction to the Special Issue "Bioinformatic tools and approaches for Synthetic Biology of natural products". Synth Syst Biotechnol. 2016;1(2):67–68.
  • Khater S, Anand S, Mohanty D. In silico methods for linking genes and secondary metabolites: The way forward. Synth Syst Biotechnol. 2016;1(2):80–88.
  • Zhang MZM, Qiao Y, Ang EL, et al. Using natural products for drug discovery: the impact of the genomics era. Expert Opin Drug Discov. 2017;12(5):475–487.
  • Wolfender JL, Litaudon M, Touboul D, et al. Innovative omics-based approaches for prioritisation and targeted isolation of natural products - new strategies for drug discovery. Nat Prod Rep. 2019;36(6):855–868.
  • Fang JS, Liu C, Wang Q, et al. In silico polypharmacology of natural products. Briefings Bioinf. 2018;19(6):1153–1171.
  • Calchera A, Dal Grande F, Bode HB, et al. Biosynthetic Gene Content of the ‘Perfume Lichens’ Evernia prunastri and Pseudevernia furfuracea. Molecules. 2019;24(1):203.
  • Medema MH, Blin K, Cimermancic P, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39(Web Server issue):W339–W346.
  • Blin K, Andreu VP, de los Santos ELC, et al. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 2019;47(D1):D625–D630.
  • Naughton LM, Romano S, O'Gara F, et al. Identification of secondary metabolite gene clusters in the pseudovibrio genus reveals encouraging biosynthetic potential toward the production of novel bioactive compounds. Front Microbiol. 2017;8:1494.
  • Du YH, Ma JJ, Yin ZQ, et al. Comparative genomic analysis of Bacillus paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B. licheniformis. Bmc Genomics. 2019;20(1):283
  • Kage H, Riva E, Parascandolo JS, et al. Chemical chain termination resolves the timing of ketoreduction in a partially reducing iterative type I polyketide synthase. Org Biomol Chem. 2015;13(47):11414–11417.
  • Schmitt I, Martin MP, Kautz S, et al. Diversity of non-reducing polyketide synthase genes in the Pertusariales (lichenized Ascomycota): a phylogenetic perspective. Phytochemistry. 2005;66(11):1241–1253.
  • Gaffoor I, Trail F. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol. 2006;72(3):1793–1799.
  • Amin AR, Kucuk O, Khuri FR, et al. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009;27(16):2712–2725.
  • Dinçsoy AB, Cansaran Duman D. Changes in apoptosis-related gene expression profiles in cancer cell lines exposed to usnic acid lichen secondary metabolite. Turk J Biol. 2017;41:484–493.
  • Gandhi SG, Mahajan V, Bedi YS. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta. 2015;241(2):303–317.
  • Jorgensen SH, Frandsen RJ, Nielsen KF, et al. Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis. Fungal Genet Biol. 2014;70:24–31.
  • Valarmathi R, Hariharan GN, Venkataraman G, et al. Characterization of a non-reducing polyketide synthase gene from lichen Dirinaria applanata. Phytochemistry. 2009;70(6):721–729.
  • Park SY, Choi J, Lee GW, et al. Draft Genome sequence of lichen-forming fungus Cladonia metacorallifera Strain KoLRI002260. Genome Announc. 2014;2(1):e01065-13.
  • Park SY, Choi J, Lee GW, et al. Draft Genome Sequence of Endocarpon pusillum Strain KoLRILF000583. Genome Announc. 2014;2(3):e00452-14.
  • Park SY, Choi J, Lee GW, et al. Draft genome sequence of Umbilicaria muehlenbergii KoLRILF000956, a lichen-forming fungus amenable to genetic manipulation. Genome Announc. 2014;2(2):e00357-14.
  • Gallo A, Ferrara M, Perrone G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins (Basel)). 2013;5(4):717–742.
  • Cox RJ, Simpson TJ. Chapter 3 fungal Type I polyketide synthases. Methods in Enzymology. 2009;459:49–78.
  • Mnguni FC, Padayachee T, Chen W, et al. More P450s are involved in secondary metabolite biosynthesis in streptomyces compared to bacillus, cyanobacteria, and mycobacterium. Int J Mol Sci. 2020;21(13):4814
  • Kim SH, Kim BG. NAD(+)-specific glutamate dehydrogenase (EC.1.4.1.2) in Streptomyces coelicolor; in vivo characterization and the implication for nutrient-dependent secondary metabolism. Appl Microbiol Biotechnol. 2016;100(12):5527–5536.
  • Kistler HC, Broz K. Cellular compartmentalization of secondary metabolism. Front Microbiol. 2015;6:68.
  • Sonawane PD, Heinig U, Panda S, et al. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc Natl Acad Sci U S A. 2018;115(23):E5419–E5428.
  • Tiwari P, Sangwan RS, Sangwan NS. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnol Adv. 2016;34(5):714–739.
  • Kohli GS, John U, Van Dolah FM, et al. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes. Isme J. 2016;10(8):1877–1890.