2,554
Views
0
CrossRef citations to date
0
Altmetric
Review

Evaluation of SARS-CoV-2 with a biophysical perspective

, , & ORCID Icon
Pages 392-406 | Received 10 Dec 2020, Accepted 01 Feb 2021, Published online: 23 Feb 2021

References

  • Wang M, Jiang A, Gong L, et al. Temperature significant change COVID‐19 Transmission in 429 cities. medRxiv. 2020 (Preprint). https://doi.org/10.1101/2020.02.22.20025791
  • Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, et al. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020;22:19.
  • Jayaweera M, Perera H, Gunawardana B, et al. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res. 2020;188:109819.
  • Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157–160.
  • Team EE. Latest updates on COVID-19 from the European Centre for Disease Prevention and Control. Euro Surveill. 2020;25(6):2002131.
  • Arne Holst, Coronavirus (COVID-19) impact index by major sector and dimension 2020, Statista. Available from: https://www.statista.com/statistics/1106302/coronavirus-impact-index-by-industry-2020/.
  • Liu HY, Manzoor A, Wang CYu, et al. The COVID-19 outbreak and affected countries stock markets response. IJERPH. 2020;17(8):2800.
  • Ahn DG, Shin HJ, Kim MH, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol. 2020;30(3):313–324.
  • V’kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2020. 28;1-16.doi: 10.1038/s41579-020-00468-6
  • Astuti I. Ysrafil Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 2020;14(4):407–412.
  • Gildenhuys S. Expanding our understanding of the role polyprotein conformation plays in the coronavirus life cycle. Biochem J. 2020;477(8):1479–1482.
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Woodward A. The genetic code of the Wuhan coronavirus shows it's 80% similar to SARS. New research suggests a potential way to neutralize the virus. Available from: https://www.businessinsider.com/wuhan-coronavirus-genome-close-to-sars-originated-in-bats-2020-2. 2020.
  • Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742
  • Huang Y, Yang C, Xu X, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141–1149.
  • Zeng W, Liu G, Ma H, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun. 2020;527(3):618–623.
  • Dutta NK, Mazumdar K, Gordy JT. The nucleocapsid protein of SARS–CoV-2: a target for vaccine development. J Virol. 2020;94(13):e00647–20.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8.
  • Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637.
  • Paolo V, Cavallini C, Spanevello A, et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20.
  • Watanabe Y, Allen JD, Wrapp D, et al. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–333.
  • Demers-Mathieu V, Do DM, Mathijssen GB, et al. Difference in levels of SARS-CoV-2 S1 and S2 subunits- and nucleocapsid protein-reactive SIgM/IgM, IgG and SIgA/IgA antibodies in human milk. J Perinatol. 2020;1:1–10. https://doi.org/10.1038/s41372-020-00805-w
  • Bosch BJ, van der Zee R, de Haan CAM, et al. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77(16):8801–8811.
  • de Haan CAM, Te Lintelo E, Li Z, et al. Cooperative involvement of the S1 and S2 subunits of the murine coronavirus spike protein in receptor binding and extended host range. JVI. 2006;80(22):10909–10918.
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23.
  • Cai Y, Zhang J, Xiao T, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020; 369(6511):1586–1592. https://doi.org/10.1126/science.abd4251
  • Mollica V, Rizzo A, Massari F, et al. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16(27):2029–2033.
  • Romano M, Ruggiero A, Squeglia F, et al. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells. 2020;9(5):1267.
  • https://www.who.int/publications/i/item/surface-sampling-of-coronavirus-disease-(-covid-19)-a-practical-how-to-protocol-for-health-care-and-public-health-professionals. Surface sampling of coronavirus disease (COVID‐19): a practical “how to” protocol for health care and public health professionals. World Health Organization. 2020.
  • Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. N Engl J Med 2020;382:1564–1567. https://doi.org/10.1056/NEJMc2004973
  • Fears AC, Klimstra WB, Duprex P, et al. Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions. (Preprint) medRxiv. 2020. https://doi.org/10.1101/2020.04.13.20063784.
  • Ge ZY, Yang LM, Xia JJ, et al. Possible aerosol transmission of COVID-19 and special precautions in dentistry. J Zhejiang Univ Sci B. 2020; 21(5):361–368.
  • Chin AWH, Chu JTS, Perera MRA, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microb. 2020; 1(1):e10.
  • Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: a review. Transbound Emerg Dis. 2020. https://doi.org/10.1111/tbed.13707.
  • Ficetola GF, Rubolini D. Containment measures limit environmental effects on COVID-19 early outbreak dynamics. Sci. Total Environ. 761, 20 March 2021, 144432. DOI: 10.1016/j.scitotenv.2020.144432.
  • Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020;3(6):e2011834. Published 2020 Jun 1. https://doi.org/10.1001/jamanetworkopen.2020.11834
  • Lu Q, Shi Y. Coronavirus disease (COVID-19) and neonate: what neonatologist need to know. J Med Virol. 2020;92(6):564–567.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
  • Yousefi R, Moosavi-Movahedi AA. Achilles' heel of the killer virus: the highly important molecular targets for hitting SARS-CoV-2 that causes COVID-19. J Iran Chem Soc. 2020;17(6):1257–1252.
  • Chen WH, Hotez PJ, Bottazzi ME. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19. Hum Vaccin Immunother. 2020;16(6):1239–1242.
  • Siber A, Bozic AL, Podgornik R. Energies and pressures in viruses: contribution of nonspecific electrostatic interactions. Phys Chem Chem Phys. 2012;14(11):3746–3765.
  • Song H, Qi J, Haywood J, et al. Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nat Struct Mol Biol. 2016;23(5):456–458.
  • Redman JA, Grant SB, Olson TM, et al. Filtration of recombinant Norwalk virus particles and bacteriophage MS2 in quartz sand: importance of electrostatic interactions. Environ Sci Technol. 1997;31(12):3378–3383.
  • van Voorthuizen EM, Ashbolt NJ, Schäfer AI. Role of hydrophobic and electrostatic interactions for initial enteric virus retention by MF membranes. J Membr Sci. 2001;194(1):69–79.
  • Li W. Structurally observed electrostatic features of the COVID-19 coronavirus-related experimental structures inside protein data bank: a brief update. 2020. https://doi.org/10.20944/preprints202003.0081.v1.
  • Michen B, Graule T. Isoelectric points of viruses. J Appl Microbiol. 2010;109(2010):388–397.
  • Duval JFL, Gaboriaud F. Progress in electrohydrodynamics of soft microbial particle interphases. Curr Opin Colloid Interface Sci. 2010;15(3):184–195.
  • Lai H. Exposure to static and extremely-low frequency electromagnetic fields and cellular free radicals. Electromagn Biol Med. 2019;38(4):231–248.
  • Sobsey MD, Jones BL. Concentration of poliovirus from tap water using positively charged microporous filters. Appl Environ Microbiol. 1979;37(3):588–595.
  • Giegé R, Helm M, Florentz C. Chemical and Enzymatic Probing of RNA Structure. In: Barton SD, Nakanishi K, Meth-Cohn O, editors. Compreh. Nat. Prod. Chem., Pergamon. 1999:63–80.
  • Jourdan SS, Osorio FA, Hiscox JA. Biophysical characterisation of the nucleocapsid protein from a highly pathogenic porcine reproductive and respiratory syndrome virus strain. Biochem Biophys Res Commun. 2012;419(2):137–141.
  • Kettleson EM, Ramaswami B, Hogan CJ, et al. Airborne virus capture and inactivation by an electrostatic particle collector. Environ Sci Technol. 2009;43(15):5940–5946.
  • Ayrapetran S. The quantum-mechanical sensitive Na/K pump is a key mechanism for the metabolic control of neuronal membrane function. Open J Biophys. 2020;10(2). 59–83.
  • Elgujja AA, Altalhi HH, Ezreqat S. Review of the efficacy of ultraviolet C for surface decontamination. J Nat Sci Med. 2020;3(1):8–12.
  • Kowalski W, Bahnfleth W, Hernandez M. A genomic model for the prediction of ultraviolet inactivation rate constants for RNA and DNA viruses. 2009. https://www.semanticscholar.org/paper/A-Genomic-Model-for-the-Prediction-of-Ultraviolet-Kowalski-Bahnfleth/642e709e98d66943d6ab5090ffddce576dced469
  • Kowalski W, Bahnfleth W, Hernandez M. A Genomic Model for Predicting the Ultraviolet Susceptibility of Viruses. IUVA News. 2009;11(2).
  • Shen L, Griffith TM, Nyangaresi PO, et al. Efficacy of UVC-LED in water disinfection on Bacillus species with consideration of antibiotic resistance issue. J Hazard Mater. 2020;386:121968.
  • ElHadidy AM, Peldszus S, Van Dyke MI, et al. An evaluation of virus removal mechanisms by ultrafiltration membranes using MS2 and φX174 bacteriophage. Sep Purif Technol. 2013;120:215–223.
  • Beck SE, Ryu H, Boczek LA, et al. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res. 2017;109:207–216.
  • Welch D, Buonanno M, Grilj V, et al. Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases. Sci Rep. 2018;8(1):2752
  • Eickmann M, Gravemann U, Handke W, et al. Inactivation of three emerging viruses - severe acute respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever virus and Nipah virus - in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang. 2020;115(3):146–151.
  • Eisenlöffel L, Reutter T, Horn M, et al. Impact of UVC-sustained recirculating air filtration on airborne bacteria and dust in a pig facility. PLoS One. 2019;14(11):e0225047.
  • Narla S, Lyons AB, Kohli I, et al. The importance of the minimum dosage necessary for UVC decontamination of N95 respirators during the COVID-19 pandemic. Photodermatol Photoimmunol Photomed. 2020;36(4):324–325.
  • Heimbuch BK, Harnish D. Research to mitigate a shortage of respiratory protection devices during public health emergencies; 2020. Available from: https://www.ara.com/news/ara-research-mitigate-shortage-respiratory-protection-devices-during-public-health-emergencies.
  • Mills D, Harnish DA, Lawrence C, et al. Ultraviolet germicidal irradiation of influenza-contaminated N95 filtering facepiece respirators. Am J Infect Control. 2018;46(7):e49–e55.
  • Taheri M, Bahrami A, Habibi P, Nouri F. A Review on the Serum Electrolytes and Trace Elements Role in the Pathophysiology of COVID-19 [published online ahead of print, 2020 Sep 8]. Biol Trace Elem Res. 2020;1–7. https://doi.org/10.1007/s12011-020-02377-4
  • Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262–265.
  • Hamada AM. Vitamins, omega-3, magnesium, manganese, and thyme can boost our immunity and protect against COVID-19. Eur J Biol Res. 2020;10(4):271–295.
  • Chams N, Chams S, Badran R, et al. COVID-19: a multidisciplinary review. Front Public Health. 2020;8:383.
  • Rahman MT, Idid SZ. Can Zn be a critical element in COVID-19 treatment? (Published online: 26 May 2020). Biological Trace Element Research (2021) 199:550–558. https://doi.org/10.1007/s12011-020-02194-9
  • Hiffler L, Rakotoambinina B. Selenium and RNA virus interactions: potential implications for SARS-CoV-2 infection (COVID-19). Front Nutr. 2020;7:164
  • Tang CF, Ding H, Jiao RQ, et al. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19. Eur J Pharmacol. 2020;886:173546
  • Zhang J, Saad R, Taylor EW, et al. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol. 2020;37:101715