1,188
Views
0
CrossRef citations to date
0
Altmetric
Articles

Generation of functional NaV1.5 current by endogenous transcriptional activation of SCN5A

&
Pages 469-477 | Received 15 Oct 2020, Accepted 15 Feb 2021, Published online: 07 Mar 2021

References

  • Credi A. A molecular cable car for transmembrane ion transport. Angew Chem Int Ed Engl. 2019;58(13):4108–4110.
  • Cubero-Font P, De Angeli A. Connecting vacuolar and plasma membrane transport networks. New Phytol. 2021;229(2):755–762.
  • Zheng SP, Huang LB, Sun Z, et al. Self-assembled artificial ion-channels toward natural selection of functions. Angew Chem Int Ed Engl. 2020;60(2):566–597.
  • Harvey JRM, Plante AE, Meredith AL. Ion channels controlling circadian rhythms in suprachiasmatic nucleus excitability. Physiol Rev. 2020;100(4):1415–1454.
  • Nguyen HX, Bursac N. Ion channel engineering for modulation and de novo generation of electrical excitability. Curr Opin Biotechnol. 2019;58:100–107.
  • Abriel H, Rougier JS, Jalife J. Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res. 2015;116(12):1971–1988.
  • Li MCH, O'Brien TJ, Todaro M, et al. Acquired cardiac channelopathies in epilepsy: evidence, mechanisms, and clinical significance. Epilepsia. 2019;60(9):1753–1767.
  • Demirbilek H, Galcheva S, Vuralli D, et al. Ion transporters, channelopathies, and glucose disorders. IJMS. 2019;20(10):2590.
  • Curran J, Mohler PJ. Alternative paradigms for ion channelopathies: disorders of ion channel membrane trafficking and posttranslational modification. Annu Rev Physiol. 2015;77:505–524.
  • Kapoor A, Lee D, Zhu L, et al. Multiple SCN5A variant enhancers modulate its cardiac gene expression and the QT interval. Proc Natl Acad Sci U S A. 2019;116(22):10636–10645.
  • Peltenburg PJ, Blom NA, Vink AS, et al. In children and adolescents from Brugada Syndrome-Families, only SCN5A mutation carriers develop a type-1 ECG pattern induced by fever. Circulation. 2020;142(1):89–91.
  • Remme CA. Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol. 2013;591(17):4099–4116.
  • Li W, Yin L, Shen C, et al. SCN5A variants: association with cardiac disorders. Front Physiol. 2018;9:1372.
  • Freyermuth F, Rau F, Kokunai Y, et al. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun. 2016;7:11067
  • Remme CA, Bezzina CR. Sodium channel (dys)function and cardiac arrhythmias. Cardiovasc Ther. 2010;28(5):287–294.
  • Marionneau C, Abriel H. Regulation of the cardiac Na + channel NaV1.5 by post-translational modifications. J Mol Cell Cardiol. 2015;82:36–47.
  • Delisle BP, Anson BD, Rajamani S, et al. Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res. 2004;94(11):1418–1428.
  • Rook MB, Evers MM, Vos MA, et al. Biology of cardiac sodium channel Nav1.5 expression. Cardiovasc Res. 2012;93(1):12–23.
  • Joung J, Konermann S, Gootenberg JS, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017;12(4):828–863.
  • Haldeman JM, Conway AE, Arlotto ME, et al. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Res. 2019;47(4):e23.
  • Liu Q, Zhao K, Wang C, et al. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv Sci (Weinh)). 2019;6(1):1801423.
  • Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326–328.
  • Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583–588.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108.
  • Baptista-Hon DT, Robertson FM, Robertson GB, et al. Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function. Br J Anaesth. 2014;113 Suppl 1:i39–i48.
  • Xu H, Xiao T, Chen CH, et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015;25(8):1147–1157.
  • Anderson KR, Haeussler M, Watanabe C, et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods. 2018;15(7):512–514.
  • Shang LL, Pfahnl AE, Sanyal S, et al. Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ Res. 2007;101(11):1146–1154.
  • Jagu B, Charpentier F, Toumaniantz G. Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death. Front Physiol. 2013;4:254
  • Romei MG, Boxer SG. Split green fluorescent proteins: scope, limitations, and outlook. Annu Rev Biophys. 2019;48:19–44.
  • Hoagland DT, Santos W, Poelzing S, et al. The role of the gap junction perinexus in cardiac conduction: potential as a novel anti-arrhythmic drug target. Prog Biophys Mol Biol. 2019;144:41–50.
  • Zegkos T, Panagiotidis T, Parcharidou D, et al. Emerging concepts in arrhythmogenic dilated cardiomyopathy. Heart Fail Rev. 2020;online ahead of print
  • Onkal R, Mattis JH, Fraser SP, et al. Alternative splicing of Nav1.5: an electrophysiological comparison of ‘neonatal’ and ‘adult’ isoforms and critical involvement of a lysine residue. J Cell Physiol. 2008;216(3):716–726.
  • Glazer AM, Wada Y, Li B, et al. High-throughput reclassification of SCN5A variants. Am J Hum Genet. 2020;107(1):111–123.
  • Zhang Z, Huang X, Qian Y, et al. Engineering smart nanofluidic systems for artificial ion channels and ion pumps: from single-pore to multichannel membranes. Adv Mater. 2020;32(4):e1904351.