1,307
Views
0
CrossRef citations to date
0
Altmetric
Articles

rpoB and efp are stable candidate reference genes for quantitative real-time PCR analysis in Saccharopolyspora spinosa

, , , , , , & show all
Pages 619-632 | Received 11 Dec 2020, Accepted 04 Mar 2021, Published online: 01 Jun 2021

References

  • Kirst HA. The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot (Tokyo). 2010;63(3):101–111.
  • Sanon A, Ba NM, Binso-Dabire CL, et al. Effectiveness of spinosad (naturalytes) in controlling the cowpea storage pest, Callosobruchus maculatus (Coleoptera: Bruchidae). J Econ Entomol. 2010;103(1):203–210.
  • Tao H, Zhang Y, Deng Z, et al. Strategies for enhancing the yield of the potent insecticide spinosad in actinomycetes. Biotechnol J. 2019;14(1):1700769.
  • Williams T, Valle J, Viñuela E. Is the naturally derived insecticide spinosad® compatible with insect natural enemies? Biocontrol Sci Techn. 2003;13(5):459–475.
  • Huang KX, Xia L, Zhang Y, et al. Recent advances in the biochemistry of spinosyns. Appl Microbiol Biotechnol. 2009;82(1):13–23.
  • Pan YL, Yang XY, Li J, Zhang RF, et al. Genome sequence of the spinosyns-producing bacterium Saccharopolyspora spinosa NRRL 18395. J Bacteriol. 2011;193(12):3150–3151.
  • Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR. Methods. 2010;50(4):227–230.
  • Huggett JF, Dheda K, Bustin SA, et al. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6(4):279–284.
  • Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559–1582.
  • Florindo C, Ferreira R, Borges V, et al. Selection of reference genes for real-time expression studies in Streptococcus agalactiae. J Microbiol Methods. 2012;90(3):220–227.
  • Løvdal T, Saha A. Reference gene selection in Carnobacterium maltaromaticum, Lactobacillus curvatus, and Listeria innocua subjected to temperature and salt stress. Mol Biotechnol. 2014;56(3):210–222.
  • Mcmillan M, Pereg L. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense. Plos One. 2014;9(5):e98162.
  • Sun Z, Deng J, Wu H, et al. Selection of stable reference genes for real-time quantitative PCR analysis in Edwardsiella tarda. J Microbiol Biotechnol. 2017;27(1):112–121.
  • Wen S, Chen X, Xu F, et al. Validation of reference genes for real-time quantitative PCR (qPCR) analysis of Avibacterium paragallinarum. PLoS One. 2016;11(12):e0167736.
  • Huang Y, Zhang X, Zhao C, et al. Improvement of spinosad production upon utilization of oils and manipulation of β-oxidation in a high-producing Saccharopolyspora spinosa strain. J Mol Microbiol Biotechnol. 2018;28(2):53–64.
  • Luo Y, Ding X, Xia L, et al. Comparative proteomic analysis of Saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci. 2011;9:40.
  • Tang Y, Xia L, Ding X, et al. Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production. FEMS Microbiol Lett. 2011;325(1):22–29.
  • Rang J, He H, Yuan S, et al. Deciphering the metabolic pathway difference between Saccharopolyspora pogona and Saccharopolyspora spinosa by comparative proteomics and metabonomics. Front Microbiol. 2020;11:396.
  • Yang Q, Ding X, Liu X, et al. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microb Cell Fact. 2014;13(1):27.
  • Zhang X, Xue C, Zhao F, et al. Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa. Microb Cell Fact. 2014;13:98.
  • Zhao C, Huang Y, Guo C, et al. Heterologous expression of spinosyn biosynthetic gene cluster in Streptomyces species is dependent on the expression of rhamnose biosynthesis genes. J Mol Microbiol Biotechnol. 2017;27(3):190–198.
  • Zhang C, Xue C, Shen Y, et al. Selection of reference genes in Saccharopolyspora Spinosa for real-time PCR. Trans Tianjin Univ. 2015;21(5):461–467.
  • Rio DC, Ares M, Hannon GJ, et al. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5439.
  • Li S, Wang W, Li X, et al. Genome-wide identification and characterization of reference genes with different transcript abundances for Streptomyces coelicolor. Sci Rep. 2015;5:15840.
  • Tanaka Y, Komatsu M, Okamoto S, et al. Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes. Appl Environ Microbiol. 2009;75(14):4919–4922.
  • Saddhe AA, Malvankar MR, Kumar K. Selection of reference genes for quantitative real-time PCR analysis in halophytic plant Rhizophora apiculata. Peer J. 2018;6:e5226.
  • Sinha P, Singh VK, Suryanarayana L, et al. Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS One. 2015;10(4):e0122847.
  • Andersen CL, Jensen JL, Rntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250.
  • Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509–515.
  • Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.1.
  • Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622.
  • Bustin SA, Benes V, Nolan T, et al. Quantitative real-time RT-PCR-a perspective. J Mol Endocrinol. 2005;34(3):597–601.
  • Niu X, Chen M, Huang X, et al. Reference gene selection for qRT-PCR normalization analysis in kenaf (Hibiscus cannabinus L.) under abiotic stress and hormonal stimuli. Front Plant Sci. 2017;8:771.
  • Pinto F, Pacheco CC, Ferreira D, et al. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS One. 2012;7(4):e34983.
  • Hampton TH, Koeppen K, Bashor L, et al. Selection of reference genes for quantitative PCR: identifying reference genes for airway epithelial cells exposed to Pseudomonas aeruginosa. Am J Physiol Lung Cellular Mol Physiol. 2020;319:256–265.
  • Li Y, Yu Z, Zhu Y, et al. Selection of nitrite-degrading and biogenic amine-degrading strains and its involved genes. Food Qual Saf. 2020;4:225–235.
  • Cankorur-Cetinkaya A, Dereli E, Eraslan S, et al. A novel strategy for selection and validation of reference genes in dynamic multidimensional experimental design in yeast. PLoS One. 2012;7(6):e38351.
  • Sun ZB, Li SD, Sun MH. Selection of reliable reference genes for gene expression studies in Clonostachys rosea 67-1 under sclerotial induction. J Microbiol Methods. 2015;114:62–65.
  • Bao Z, Zhang K, Lin H, et al. Identification and selection of reference genes for quantitative transcript analysis in Corydalis yanhusuo. Genes. 2020;11(2):130.
  • Long X, Lu J, Kav NNV, et al. Identification and evaluation of suitable reference genes for gene expression analysis in rubber tree leaf. Mol Biol Rep. 2020;47:7.
  • Miao L, Qin X, Gao LH, et al. Selection of reference genes for quantitative real-time PCR analysis in cucumber (Cucumis sativus L.), pumpkin (Cucurbita moschata Duch.) and cucumber-pumpkin grafted plants. PeerJ. 2019;7:e6536.
  • Turroni S, Bendazzoli C, Dipalo SCF, et al. Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes. Appl Environ Microbiol. 2010;76(16):5609–5620.
  • Bujold AR, Macinnes JI. Validation of reference genes for quantitative real-time PCR (qPCR) analysis of Actinobacillus suis. BMC Res Notes. 2015;8:86.
  • Jacob TR, Laia ML, Ferro JA, et al. Selection and validation of reference genes for gene expression studies by reverse transcription quantitative PCR in Xanthomonas citri subsp. citri during infection of Citrus sinensis. Biotechnol Lett. 2011;33(6):1177–1184.
  • Sihto H-M, Tasara T, Stephan R, et al. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiol Lett. 2014;356(1):134–140.
  • Taurai T, Roger S. Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett. 2007;269:265–272.
  • Guerra SM, Rodríguez-García A, Santos-Aberturas J, et al. LAL regulators SCO0877 and SCO7173 as pleiotropic modulators of phosphate starvation response and actinorhodin biosynthesis in Streptomyces coelicolor. PLoS One. 2012;7(2):e31475.