1,167
Views
3
CrossRef citations to date
0
Altmetric
Articles

Identification and characterization of miRNAs and target genes in developing flax seeds by multigroup analysis

, , , &
Pages 538-550 | Received 21 Dec 2020, Accepted 10 Mar 2021, Published online: 01 Apr 2021

References

  • Tzafrir I, Pena-Muralla R, Dickerman A, et al. Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 2004;135(3):1206–1220.
  • Druka A, Muehlbauer G, Druka I, et al. An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics. 2006;6(3):202–211.
  • Pfeifer M, Kugler KG, Sandve SR, International Wheat Genome Sequencing Consortium, et al. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science. 2014;345(6194):1250091.
  • Sreenivasulu N, Altschmied L, Radchuk V, et al. Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J. 2004;37(4):539–553.
  • Sreenivasulu N, Usadel B, Winter A, et al. Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new Map Man/Page Man profiling tools. Plant Physiol. 2008;146(4):1738–1758.
  • Wang L, Xie W, Chen Y, et al. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J. 2010;61(5):752–766.
  • Devic M. The importance of being essential: EMBRYO-DEFECTIVE genes in Arabidopsis. C R Biol. 2008;331(10):726–736.
  • Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57(1):19–53.
  • Curaba J, Spriggs A, Taylor J, et al. miRNA regulation in the early development of barley seed. BMC Plant Biol. 2012;12:120.
  • Li PY, Wang H, Liu L, et al. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front. Genet. 2019;10(55):1–16.
  • Heisel SE, Zhang Y, Allen E, et al. Characterization of unique small RNA populations from rice grain. PloS One. 2008;3(8):e2871.
  • Zhang YC, Yu Y, Wang CY, Li ZY, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol. 2013;31(9):848–852.
  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–655.
  • Fei Q, Xia R, Meyers BC. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell. 2013;25(7):2400–2415.
  • Matsunaga W, Ohama N, Tanabe N, et al. A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis. Front Plant Sci. 2015;6(48):1–12.
  • Lu J, Zhang CQ, Baulcombe DC, et al. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci U S A. 2012;109(14):5529–5534.
  • Li AL, Liu DC, Wu J, et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell. 2014;26(5):1878–1900.
  • Vaisey-Genser M, Morris DH. Introduction: history of the cultivation and uses of flaxseed. In: Muir AD, Westcott ND, editors. Flax: The Genus Linum. Boca Raton (FL): CRC Press; 2003. p. 1–21.
  • Wisker E, Rabe E, Metzner C, et al. The effectiveness of linseed[J]. Ernhrungs Umschau. 1999;46(3):76–86.
  • Alhassane T, Xu XM. Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr Rev Food Sci. 2010;9:261–269.
  • Zanwar AA, Hegde MV, Bodhankar SL. Chapter 71—Flax lignan in the prevention of atherosclerotic cardiovascular diseases. In: Polyphenols in human health & disease. Academic Press, Elsevier Inc; 2014. p. 915–921.
  • Kreydin EI, Kim MM, Barrisford GW, et al. Urinary lignans are associated with decreased incontinence in postmenopausal women. Urology. 2015;86(4):716–720.
  • Chen FP, Chang CJ, Chao AS, et al. Efficacy of Femarelle for the treatment of climacteric syndrome in postmenopausal women: an open label trial. Taiwan J Obstet Gyne. 2016;55(3):336–340.
  • Venglat P, Xiang DQ, Qiu SQ, et al. Gene expression analysis of flax seed development. BMC Plant Biol. 2011;11(1):74.
  • Xie DW, Dai ZG, Yang ZM, et al. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism. Plant Sci. 2019;286:98–107.
  • Zhang TB, Li Z, Song XX, et al. Identification and characterization of microRNAs in the developing seed of linseed flax (Linum usitatissimum L.). IJMS. 2020;21(8):2708.
  • Citartan M, Tan SC, Tang TH. A rapid and cost effective method in purifying small RNA. World J Microbiol Biotechnol. 2012;28(1):105–111.
  • Fahlgren N, Howell MD, Kasschau KD, et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One. 2007;2(2):e219.
  • Allen E, Xie Z, Gustafson AM, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121(2):207–221.
  • Wang Z, Hobson N, Galindo L, et al. The genome of flax (Linum usitatissimum. L) assembled de novo from short shotgun sequence reads. Plant J. 2012;72(3):461–473.
  • Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics. 2009;25(1):130–131.
  • Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol. 2010;10:71.
  • Hurley J, Roberts D, Bond A, et al. Stem-loop RT-qPCR for microRNA expression profiling. Methods Mol Biol. 2012;822:33–52.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–408.
  • Kandasamy SK, Fukunaga R. Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production. Proc Natl Acad Sci U S A. 2016;113(49):14031–14036.
  • Parizotto EA, Dunoyer P, Rahm N, et al. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 2004;18(18):2237–2242.
  • Megraw M, Baev V, Rusinov V, et al. MicroRNA promoter element discovery in Arabidopsis. RNA. 2006;12:1612–1619.
  • Cui LG, Shan JX, Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 2014;80(6):1108–1117.
  • Wang JW, Schwab R, Czech B, et al. Dual effects of miR156-Targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell. 2008;20(5):1231–1243.
  • Huang W, Peng SY, Xian ZQ, et al. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnol J. 2017;15(4):472–478.
  • Hai BZ, Qiu ZB, He YY, Yuan MM, et al. Characterization and primary functional analysis of Pinus densata miR171. Biologia Plant. 2018;62(2):318–324.
  • Song ZQ, Zhang LF, Wang YL, et al. Constitutive expression of miR408 improves biomass and seed yield in Arabidopsis. Front Plant Sci. 2018;8:2114.
  • Ma SY. Expression pattern and function of miR408 in seed development of rice (Oryza sativa). Master’s thesis in China, with English abstract, Zhejiang University, 2012.
  • Radchuk VV, Borisjuk L, Sreenivasulu N, et al. Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol. 2009;150(1):190–204.
  • Martinez-Barajas E, Delatte T, Schluepmann H, et al. Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiol. 2011;156(1):373–381.
  • Haberer G, Mayer KF. Barley: from brittle to stable harvest. Cell. 2015;162(3):469–471.
  • Zhou J, Cheng Y, Yin M, et al. Identification of novel miRNAs and miRNA expression profiling in wheat hybrid necrosis. PloS One . 2015;10(2):e0117507.
  • Rubio-Somoza I, Weigel D. MicroRNA networks and developmental plasticity in plants. Trends Plant Sci. 2011;16(5):258–264.
  • Zhou M, Gu L, Li P, et al. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol. 2010;5(1):67–e90.
  • Damodharan S, Corem S, Gupta SK, et al. Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J. 2018;96(4):855–868.
  • Nodine MD, Bartel DP. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev. 2010;24(23):2678–2692.
  • Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature. 2003;425(6955):257–263.
  • Wang SK, Wu K, Yuan QB, et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet. 2012;44(8):950–954.
  • Wang L, Mai Y-X, Zhang Y-C, et al. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant. 2010;3(5):794–806.,
  • Fan S, Zhang D, Gao C, et al. Identification, classification, and expression analysis of GRAS gene family in Malus domestica. Front Physiol. 2017;8:253.
  • Peng T, Sun HZ, Qiao MM, et al. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biol. 2014;14:196.
  • Yi R, Zhu ZX, Hu JH, et al. Identification and expression analysis of microRNAs at the grain filling stage in rice(Oryza sativa L.)via deep sequencing. PLoS One. 2013;8(3):e57863.
  • Han R, Jian C, Lv JY, et al. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics. 2014;15:289.
  • Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004;16(8):2001–2019.
  • Liu B, Li PC, Li X, et al. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol. 2005;139(1):296–305.
  • Song QX, Liu YF, Hu XY, et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol. 2011;11:5.
  • Asakura T, Watanabe H, Abe K, et al. Rice aspartic proteinase, oryzasin, expressed during seed ripening and germination, has a gene organization distinct from those of animal and microbial aspartic proteinases. Eur J Biochem. 1995;232(1):77–83.
  • Luo Y, Guo Z, Li L. Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol. 2013;380(2):133–144.
  • Zhang B, Wang Q. MicroRNA-based biotechnology for plant improvement. J Cell Physiol. 2015;230(1):1–15.