2,222
Views
0
CrossRef citations to date
0
Altmetric
Articles

High RNA quality extracted from the tolerant crop Cyamopsis tetragonoloba (L.) despite possession of low RNA integrity number

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 608-618 | Received 14 Dec 2020, Accepted 26 Mar 2021, Published online: 27 Apr 2021

References

  • Borsani O, Valpuesta V, Botella MA. Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell, Tissue Organ Culture. 2003;73(2):101–115.
  • Mallik S, Nayak M, Sahu BB, et al. Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biologia Plant. 2011;55(1):191–195.
  • Al Hassan M, Estrelles E, Soriano P, et al. Unraveling salt tolerance mechanisms in halophytes: A comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Front Plant Sci. 2017;8:1438.
  • Gharbi E, Martinez JP, Benahmed H, et al. Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum. Plant Sci. 2017;258:77–89.
  • Nikalje GC, Variyar PS, Joshi MV, et al. "Temporal and spatial changes in ion homeostasis and accumulation of flavanoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L. PLoS One. 2018;13(4):e0193394.
  • Rahman MM, Rahman MA, Miah MG, et al. Mechanistic insight into salt tolerance of Acacia auriculiformis: the importance of ion selectivity, osmoprotection, tissue tolerance, and Na + exclusion. Front Plant Sci. 2017;8:155.
  • Burman U, Garg BK, and, Kathju S. Interactive effects of thiourea and phosphorus on clusterbean under water stress. Biologia Plant. 2004;48(1):61–65.
  • Ashraf MY, Akhtar K, Sarwar G, et al. Role of the rooting system in salt tolerance potential of different guar accessions. Agron Sustain Dev. 2005;25(2):243–249.
  • Francois LE, Donovan TJ, Maas EV. Salinity effects on emergence, vegetative growth, and seed yield of guar. Agronj. 1990;82(3):587–592.
  • Wang Z, Gerstein M, and, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.
  • An YM, Song LL, Liu YR, et al. De Novo transcriptional analysis of Alfalfa in response to saline-alkaline stress. Front Plant Sci. 2016;7:931.
  • Diray-Arce J, Clement M, Gul B, et al. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. BMC Genomics. 2015;16(1):353.
  • Hess M, Wildhagen H, Junker LV, et al. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat. BMC Genomics. 2016;17(1):682.
  • Sharma R, Mishra M, Gupta B, et al. De Novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PLoS One. 2015;10(5):e0126783.
  • Woldesemayat AA, and, Ntwasa M. Pathways and network based analysis of candidate genes to reveal cross-talk and specificity in the Sorghum (Sorghum bicolor (L.) Moench) responses to drought and it’s co-occurring stresses. Front Genet. 2018;9:557.
  • Angela Pérez-Novo C, Claeys C, Speleman F, et al. Impact of RNA quality on reference gene expression stability. Biotechniques. 2005;39(1):52–56.
  • Gehrig HH, Winter K, Cushman J, et al. An improved RNA isolation method for succulent plant species rich in polyphenols and polysaccharides. Plant Mol Biol Rep. 2000;18(4):369–376.
  • Katterman FRH, Shattuck VI. An effective method of DNA isolation from the mature leaves of Gossypium species that contain large amounts of phenolic terpenoids and tannins. Prep Biochem. 1983;13(4):347–359.
  • Levi A, Galau GA, Wetzstein HY. A rapid procedure for the isolation of RNA from high-phenolic-containing tissues of pecan. HortSci. 1992;27(12):1316–1318.
  • Sambrook HC, Fritsch, EF, Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
  • Agrawal AA. Current trends in the evolutionary ecology of plant defence. Functional Ecol. 2011;25(2):420–432.
  • Berenbaum MR, Zangerl AR. Facing the future of plant-insect interaction research: le retour à la “raison d’être". Plant Physiol. 2008;146(3):804–811.
  • Loomis WD. 1974. Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods in enzymology, 31, 528–544. https://doi.org/10.1016/0076-6879(74)31057-9.
  • Macel M, Van Dam NM, Keurentjes JJ. Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour. 2010;10(4):583–593.
  • Sharma AD, Gill PK, Singh P. RNA isolation from plant tissues rich in polysaccharides. Anal Biochem. 2003;314(2):319–321.
  • Walter J, Hein R, Auge H, et al. How do extreme drought and plant community composition affect host plant metabolites and herbivore performance?Arthropod-Plant Inter. 2012;6(1):15–25.
  • Bilgin DD, DeLucia EH, Clough SJ. A robust plant RNA isolation method suitable for Affymetrix GeneChip analysis and quantitative real-time RT-PCR. Nat Protoc. 2009;4(3):333–340.
  • Gayral P, Weinert L, Chiari Y, et al. Next-generation sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals. Mol Ecol Resour. 2011;11(4):650–661.
  • Johnson MT, Carpenter EJ, Tian Z, et al. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One. 2012;7(11):e50226.
  • Behnam B, Bohorquez-Chaux A, Castaneda OF, et al. An optimized isolation protocol yields high-quality RNA from cassava tissues (Manihot esculenta Crantz). FEBS Open Bio. 2019;9(4):814–825.
  • Liu L, Han R, Yu N, et al. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. PloS One. 2018;13(5):e0196592.
  • Sellin MJ, Kiss AJ, Smith AW, et al. A comparison of commercially-available automated and manual extraction kits for the isolation of total RNA from small tissue samples. BMC Biotechnol. 2014;14(1):94–94.
  • Iandolino AB, Goes Da Silva F, Lim H, et al. High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Mol Biol Rep. 2004;22(3):269–278.
  • Matsubara T, Soh J, Morita M, et al. DV200 Index for Assessing RNA integrity in next-generation sequencing. Biomed Res Int. 2020;2020:9349132.
  • Alshameri A, Al-Qurainy F, Khan S, et al. Appraisal of guar [Cyamopsis tetragonoloba (l.) Taub.] accessions for forage purpose under the typical Saudi Arabian environmental conditions encompassing high temperature, salinity and drought. Pak J Bot. 2017;49(4):1405–1413.
  • Kanani P, Shukla YM, Modi AR, et al. Standardization of an efficient protocol for isolation of RNA from Cuminum cyminum. J King Saud Univ-Sci. 2019;31(4):1202–1207.
  • Imbeaud S, Graudens E, Boulanger V, et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 2005;33(6):e56–e56.
  • Padmanaban A, Ruediger S, Charmian C. RNA quality control using the agilent 2200 TapeStation system–assessment of the RIN e quality metric (Application note No.5991-0023EN). Agilent Technologies Application Notes. 2012. Retrieved from https://hpst.cz/sites/default/files/oldfiles/rna-quality-control-using-agilent-2200-tapestation-system-assessmentrine-quality-metric.pdf
  • Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute.
  • Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652.
  • Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–1512.
  • Patil CG. Nuclear DNA amount variation in Cyamopsis DC (Fabaceae). Cytologia. 2004;69(1):59–62.
  • Minhas PS, Rane J, and RK. Pasala 2017. Abiotic stress management for resilient agriculture. New York, USA: Springer.
  • Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58(4):586–597.
  • Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015(11):pdb.top084970. pdb. top084970.
  • Almarza J, Morales S, Rincon L, et al. Urea as the only inactivator of RNase for extraction of total RNA from plant and animal tissues. Anal Biochem. 2006;358(1):143–145.
  • Bekesiova I, Nap J-P, and, Mlynarova L. Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Rep. 1999;17(3):269–277.
  • Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep. 1993;11(2):113–116.
  • Kiefer E, Heller W, Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep. 2000;18(1):33–39.
  • Geuna F, Hartings H, Scienza A. A new method for rapid extraction of high quality RNA from recalcitrant tissues of grapevine. Plant Mol Biol Rep. 1998;16(1):61–67.
  • Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on . Nat Protoc. 2006;1(2):581–585.
  • Chomzynski P. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–159.
  • Puissant C, Houdebine LM. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques. 1990;8(2):148–149.
  • Newbury HJ, Possingham JV. Factors affecting the extraction of intact ribonucleic Acid from plant tissues containing interfering phenolic compounds. Plant Physiol. 1977;60(4):543–547.
  • Wan C-Y, Wilkins TA. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem. 1994;223(1):7–12.
  • Jakovljević KV, Spasić MR, Mališić EJ, et al. Comparison of phenol-based and alternative RNA isolation methods for gene expression analyses. J Serb Chem Soc. 2010;75(8):1053–1061.
  • Russell DW, Sambrook J. 2001. Molecular cloning: a laboratory manual. Vol. 1. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Tavares L, Alves PM, Ferreira RB, et al. Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC Res Notes. 2011;4(1):3.doi:10.1186/1756-0500-4-3.
  • Zhen L-N, Kang W, Ying-Jun Z, et al. A method for high-quality RNA extraction from tall fescue. Afr J Biotechnol. 2011;10(37):7161–7165.
  • De Coaña YP, Parody N, Fernández-Caldas E, et al. A Modified Protocol for RNA isolation from high polysaccharide containing Cupressus arizonica Pollen. Applications for RT-PCR and phage display library construction. Mol Biotechnol. 2010;44(2):127–132.
  • Wilfinger WW, Mackey K, and, Chomczynski P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques. 1997;22(3):4746. 478-81.
  • Pester D, Milcevicova R, Schaffer J, et al. Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees. PLoS One. 2012;7(3):e32583.
  • Schroeder A, Mueller O, Stocker S, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7(1):3.
  • Vasanthaiah HK, Katam R, Sheikh MB. Efficient protocol for isolation of functional RNA from different grape tissue rich in polyphenols and polysaccharides for gene expression studies. Electron J Biotechnol. 2008;11(3):0–51.
  • Babu S, Gassmann M. 2011. Assessing integrity of plant RNA with the Agilent 2100 Bioanalyzer. California, USA: Agilent Technologies.
  • Pereira MA, Imada EL, Guedes RLM. RNA-seq: applications and best practices. In Applications of RNA-Seq omics strategies-from microorganisms to human health. 2017. p. 3–36. London, United Kingdom: IntechOpen.
  • Hall TC. 2018. Nucleic acids in plants: Volume I. Florida, USA: CRC Press.
  • Smart M, Roden LC. A small-scale RNA isolation protocol useful for high-throughput extractions from recalcitrant plants. S Afr J Bot. 2010;76(2):375–379.
  • Kim WS, Haj-Ahmad Y. Evaluation of Plant RNA Integrity Number (RIN) generated using an Agilent BioAnalyzer 2100. Application Note 80 Plant/Fungi RNA Sample Preparation - Norgen Biotek Corp. 2016. Retrieved from https://norgenbiotek.com/sites/default/files/resources/App-Note-80-Plant-RNA-RIN.pdf