2,234
Views
7
CrossRef citations to date
0
Altmetric
Articles

Patterns of genome-wide codon usage bias in tobacco, tomato and potato

ORCID Icon, ORCID Icon & ORCID Icon
Pages 657-664 | Received 03 Feb 2021, Accepted 29 Mar 2021, Published online: 06 May 2021

References

  • Mitra S, Ray SK, Banerjee R. Synonymous codons ­influencing gene expression in organisms. RRBC. 2016;6:57–65.
  • Boël G, Letso R, Neely H, et al. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature. 2016;529(7586):358–363. [26760206]
  • Liu Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun Signal. 2020;18(1):145.
  • Wang L, Xing H, Yuan Y, et al. Genome-wide analysis of codon usage bias in four sequenced cotton species. PLoS One. 2018;13(3):e0194372. http://dx.doi.org/10.1371/journal.pone.0194372.
  • LaBella AL, Opulente DA, Steenwyk JL, et al. Variation and selection on codon usage bias across an entire subphylum. PLoS Genet. 2019;15(7):e1008304.
  • Prabha R, Singh DP, Sinha S, et al. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes. Mar Genom. 2017;32:31–39. http://dx.doi.org/10.1016/j.margen.2016.10.001.
  • Deng Y, de Lima Hedayioglu F, Kalfon J, et al. Hidden patterns of codon usage bias across kingdoms. J R Soc Interface. 2020;17(163):20190819. http://dx.doi.org/10.1098/rsif.2019.0819.
  • Lyu X, Yang Q, Li L, et al. Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genet. 2020;16(6):e1008836.
  • Huang Y, Koonin EV, Lipman DJ, et al. Selection for minimization of translational frameshifting errors as a factor in the evolution of codon usage. Nucleic Acids Res. 2009;37(20):6799–6810.
  • Frumkin I, Lajoie MJ, Gregg CJ, et al. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc Natl Acad Sci U S A. 2018;115(21):E4940–E4949. https://www.pnas.org/content/115/21/E4940.
  • Tian J, Yan Y, Yue Q, et al. Predicting synonymous codon usage and optimizing the heterologous gene for expression in E. coli. Sci Rep. 2017;7(1):1–9. http://dx.doi.org/10.1038/s41598-017-10546-0.
  • Newman ZR, Young JM, Ingolia NT, et al. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc Natl Acad Sci U S A. 2016;113(10):E1362–E1371. https://www.pnas.org/content/113/10/E1362.
  • Romiguier J, Roux C. Analytical biases associated with GC-content in molecular evolution. Front Genet. 2017;8:16. http://dx.doi.org/10.3389/fgene.2017.00016.
  • Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990;87(1):23–29.
  • Sharp PM, Li W-h. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research. 1987;15(3):1281–1295.
  • Song H, Liu J, Song Q, et al. Comprehensive analysis of codon usage bias in seven epichloë species and their peramine-coding genes. Front Microbiol. 2017;8(July):1–12.
  • Bera BC, Virmani N, Kumar N, et al. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution. BMC Genomics. 2017;18(1):652.
  • Sablok G, Wu X, Kuo J, et al. Genomics combinational effect of mutational bias and translational selection for translation efficiency in tomato (Solanum lycopersicum) Cv. Micro-Tom. Genomics. 2013;101(5):290–295. http://dx.doi.org/10.1016/j.ygeno.2013.02.008.
  • Novembre J. A. Letter to the editor accounting for background nucleotide composition when measuring codon usage bias. Amino Acids. 2002;19(8):1390–1394.
  • Wickham H. 2016. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. http://ggplot2.org.
  • Lee BD. Python implementation of codon adaptation index. JOSS. 2018;3(30):905.
  • Charif D, Lobry JR. 2007. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, and Vendruscolo M, editors. Structural approaches to sequence evolution: molecules, networks, populations, biological and medical physics, biomedical engineering. New York: Springer Verlag. p. 207–232.
  • Khandia R, Singhal S, Kumar U, et al. Analysis of nipah virus codon usage and adaptation to hosts. Front Microbiol. 2019;10(MAY):1–18.
  • Sueoka N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol. 1995;40(3):318–325.
  • Zhang R, Zhang L, Wang W, et al. Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild solanum species. IJMS. 2018;19(10):3142.
  • Naya H, Zavala A, Romero H, et al. Correspondence analysis of amino acid usage within the family Bacillaceae. Biochem Biophys Res Commun. 2004;325(4):1252–1257.
  • Kawabe A, Miyashita NT. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst. 2003;78(5):343–352.
  • Ossowski S, Schneeberger K, Lucas-Lledó JI, et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327(5961):92–94.
  • Camiolo S, Melito S, Porceddu A. New insights into the interplay between codon bias determinants in plants. DNA Res. 2015;22(6):461–470.
  • Murray EE, Lotzer J, Eberle M. Codon usage in plant genes. Nucleic Acids Res. 1989;17(2):477–498.
  • Liu H, Huang Y, Du X, et al. Patterns of synonymous codon usage bias in the model grass brachypodium distachyon. Genet Mol Res. 2012;11(4):4695–4706.