894
Views
4
CrossRef citations to date
0
Altmetric
Articles

Complete chloroplast genomes of wild and cultivated Cryptomeria japonica var. sinensis

, , , , , & show all
Pages 821-827 | Received 12 Jan 2021, Accepted 15 May 2021, Published online: 11 Jun 2021

References

  • Xue S, Shi T, Luo WJ, et al. Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Hortic Res. 2019;6(1):89.
  • Huang H, Shi C, Liu Y, et al. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol. 2014;14:151.
  • Kuo LY, Tang TY, Li FW, et al. Organelle genome inheritance in Deparia ferns (Athyriaceae, Aspleniineae, Polypodiales). Front Plant Sci. 2018;9:486
  • Droogenbroeck BV, Maertens I, Haegeman A, et al. Maternal inheritance of cytoplasmic organelles in intergeneric hybrids of Carica papaya L. and Vasconcellea spp. (Caricaceae Dumort., Brassicales). Euphytica. 2005;143(1-2):161–168.
  • Ennos RA, Sinclair WT, Hu XS, et al. Using organelle markers to elucidate the history, ecology and evolution of plant populations. In Molecular systematics and plant evolution. London: Taylor & Francis; 1999. p. 1–19.
  • Shinozaki K, Ohme M, Tanaka M, et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986;5(9):2043–2049.
  • Ohyama K, Fukuzawa H, Kohchi T, et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature. 1986;322(6079):572–574.
  • Li JJ, Zhang D, Ouyang KX, et al. The complete chloroplast genome of the miracle tree Neolamarckia cadamba and its comparison in Rubiaceae family. Biotechnol Biotechnol Equip. 2018;32(5):1087–1097.
  • Xie WW, Li JN, Ye BJ, et al. The complete chloroplast genome of Cryptomeria japonica var. sinensis (Cupressaceae). Mitochondrial DNA B Resour. 2020;5(3):3392–3411.
  • Wang WC, Chen SY, Guo W, et al. Tropical plants evolve faster than their temperate relatives: a case from the bamboos (Poaceae: Bambusoideae) based on chloroplast genome data. Biotechnol Biotechnol Equip. 2020;34(1):482–493.
  • Kaila T, Chaduvla PK, Rawal HC, et al. Chloroplast genome sequence of clusterbean (Cyamopsis tetragonoloba L.): genome structure and comparative analysis. Genes. 2017;8(9):212.
  • Xiao PG, Huang B, Ge GB, et al. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Syst Evol. 2008;276(1-2):89–104.
  • Sugiura M. The chloroplast genome. Plant Mol Biol. 1992;19(1):149–168.
  • Sigmon BA, Adams RP, Mower JP. Complete chloroplast genome sequencing of vetiver grass (Chrysopogon zizanioides) identifies markers that distinguish the nonfertile’ Sunshine’ cultivar from other accessions. Ind Crops Prod. 2017;108:629–635.
  • Strauss SH, Palmer JD, Howe GT, et al. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci USA. 1988;85(11):3898–3902.
  • Jia XM, Liu CP. Characterization of the complete chloroplast genome of the Chinese yew Taxus chinensis (Taxaceae), an endangered and medicinally important tree species in China. Conservation Genet Resour. 2017;9(2):197–199.
  • Yu T, Huang BH, Zhang YY, et al. Chloroplast genome of an extremely endangered conifer Thuja sutchuenensis Franch.: gene organization, comparative and phylogenetic analysis. Physiol Mol Biol Plants. 2020;26(3):409–418.
  • Tsumura Y, Yoshimura K, Tomaru N, et al. Molecular phytogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theor Appl Genet. 1995;91(8):1222–1236.
  • Patel RK, Jain M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS One. 2012;7(2):e30619.
  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19(5):455–477.
  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–3302.
  • Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004;20(17):3252–3255.
  • Lowe TM, Chan PP. tRNAscan-SE On-line: Search and Contextual Analysis of Transfer RNA Genes. Nucleic Acids Res. 2016;44(W1):W54–57.
  • Lagesen K, Hallin P, Rødland EA, et al. RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res. 2007;35(9):3100–3108.
  • Lohse M, Drechsel O, Kahlau S, et al. OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41(Web Server issue):W575–W581.
  • Kumar S, Stecher G, Li M, et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549.
  • Beier S, Thiel T, Münch T, et al. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33(16):2583–2585.
  • Hirao T, Watanabe A, Kurita M, et al. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol. 2008;8(1):70.
  • Duan H, Guo JB, Xuan L, et al. Comparative chloroplast genomics of the genus Taxodium. BMC Genomics. 2020;21(1):114.
  • Hao ZD, Cheng TL, Zheng RH, et al. The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis: Comparative analysis and insights into dynamics of chloroplast genome rearrangement in Cupressophytes and Pinaceae. PloS One. 2016;11(8):e0161809.
  • Xu J, Yang C, Liao BS, et al. Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience. 2017;6(11):1–15.
  • Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 2006;34(21):6137–6146.
  • Jones TE, Ribas PL, Alexander RW. Evidence for late resolution of the aux codon box in evolution. J Biol Chem. 2013;288(27):19625–19632.
  • Mohanta TK, Khan AL, Hashem A, et al. Genomic and evolutionary aspects of chloroplast tRNA in monocot plants. BMC Plant Biol. 2019;19(1):39.
  • Hiratsuka J, Shimada H, Whittier R, et al. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989;217:185–194.
  • Kikuchi S, Bedard J, Hirano M, et al. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science. 2013;339(6119):571–574.
  • Flannery ML, Mitchell FJ, Coyne S, et al. Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet. 2006;113(7):1221–1231.
  • Yang AH, Zhang JJ, Yao XH, et al. Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense. Am J Bot. 2011;98:123–126.
  • Jiao Y, Jia HM, Li XW, et al. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genom. 2012;13(1):201.
  • Shimada H, Sugiura M. Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet. 1989;16(4):293–301.
  • Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics. 2000;156(2):847–854.