1,934
Views
1
CrossRef citations to date
0
Altmetric
Articles

Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26

, , , , , , & show all
Pages 895-904 | Received 14 Dec 2020, Accepted 20 May 2021, Published online: 06 Jul 2021

References

  • Meena K, Kanwar S. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Res Int. 2015;2015:473050.
  • Droby S, Wisniewski M, Teixidó N, et al. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol. 2016;122:22–29.
  • Steller S, Vollenbroich D, Leenders F, et al. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol. 1999;6(1):31–41.
  • Jacques P. Surfactin and Other Lipopeptides from Bacillus spp. Berlin Heidelberg: Springer; 2010.
  • Rabbee M, Ali M, Choi J, et al. Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules (Basel, Switzerland). 2019;24(6):1046.
  • Schofield BJ, Skarshewski A, Lachner N, et al. Near complete genome sequence of the animal feed probiotic, Bacillus amyloliquefaciens H57. Genomic Sci. 2016;11(1):60.
  • Chen X, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 2007;25(9):1007–1014.
  • Fan B, Wang C, Song X, et al. Bacillus velezensis corrigendum: FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol. 2019;10:1279.
  • Adeniji A, Aremu O, Babalola O. Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.: Metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5. Microbiol Open. 2019;8:e00742.
  • Grady E, MacDonald J, Ho M, et al. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiol. 2019;19(1):5.
  • Cao Y, Pi H, Chandrangsu P, et al. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep. 2018;8(1):4360.
  • Liu Y, Teng K, Wang T, et al. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize. J Appl Microbiol. 2020;128(1):242–254.
  • Carrillo C, Teruel J, Aranda F, et al. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta. 2003;1611(1–2):91–97.
  • Chung Y, Kim C, Hwang I, et al. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int. J. Syst. Evol. Microbiol. 2000;50(4):1495–1500.
  • Yu GY, Sinclair JB, Hartman GL, et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem. 2002;34:0–963.
  • Angelini T, Roper M, Kolter R, et al. Bacillus subtilis spreads by surfing on waves of surfactantProc Natl Acad Sci USA 2009;106:18109–18113.
  • Nishikiori T, Naganawa H, Muraoka Y, et al. Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67, III. Structural elucidation of plipastatins. J Antibiot. 1986;39:755–761.
  • Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 2007;9(4):1084–1090.
  • Pathak KV, Keharia H, Gupta K, et al. Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom. 2012;23(10):1716–1728.
  • Blée E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 2002;7(7):315–322.
  • Liu C, Liu HW, Wang BQ, et al. Isolation of antifungal substances from Bacillus amyloliquefaciens BA-26 and its antifungal activity against Botrytis cinerea. Biotechnol Bull. 2019a;35:83–89.
  • Yang F, Zhang FY, Sun JC, et al. Identification and preliminary application of antagonistic strains of potato fungal diseases. China Veg. 2019;11:56–62.
  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England). 2010;26(5):589–595.
  • van HA, Jong Ad, Montalbán-López M, et al. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013;41:W448–453.
  • Ashburner M, Ball C, Blake J, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29.
  • Consortium GO. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:D1049–1056.
  • Kanehisa M, Goto S, Sato Y, et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucl Acids Res. 2014;42(D1):D199–205.
  • Tatusov R, Fedorova N, Jackson J, et al. The COG database: an updated version includes eukaryotes. BMC Bioinf. 2003;4(1):41.
  • Wang S, Chen GJ, Zhang HQ, et al. Carbohydrate-active enzyme (CAZy) database and its new prospect. Chin J Bioprocess Eng. 2014;12:102–108.
  • Blin K, Wolf T, Chevrette M, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45(W1):W36–W41.
  • Xin B, Zheng J, Xu Z, et al. Three novel lantibiotics, Ticins A1, A3, and A4, have extremely stable properties and are promising food biopreservatives. Appl Environ Microbiol. 2015;81(20):6964–6972.
  • Xu BH, Lu YQ, Ye ZW, et al. Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. PloS One. 2018;13(8):e0202893.
  • Chen MC, Wang JP, Zhu YJ, et al. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349. J Appl Microbiol. 2019;126(5):1519–1529.
  • Pathak K, Keharia H. Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). J Appl Microbiol. 2013;114(5):1300–1310.
  • Liu HW, Wang YN, Yang QX, et al. Bacillus amyloliquefaciens Genomics and LC-MS reveal diverse active secondary metabolites in WS-8. J Microbiol Biotechnol. 2019b;30(3):417–426.
  • Liu HW, Yin S, An LK, et al. Complete genome sequence of Bacillus subtilis BSD-2, a microbial germicide isolated from cultivated cotton. J Biotechnol. 2016;230:26–27.
  • Han Y, Li XX, Guo YY, et al. Co-production of multiple antimicrobial compounds by Bacillus amyloliquefaciens WY047, a strain with broad-spectrum activity. Trans Tianjin Univ. 2018;24(2):160–171.
  • Mora I, Cabrefiga J, Montesinos E. Antimicrobial peptide genes in Bacillus strains from plant environments. Int Microbiol. 2011;14:213–223.
  • Aranda FJ, Teruel JA, Ortiz A. Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta. 2005;1713:51–56.
  • Vanittanakom N, Loeffler W, Koch U, et al. Fengycin–a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot. 1986;39(7):888–901.
  • Liu J, Zhou T, He D, et al. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J Mol Microbiol Biotechnol. 2011;20(1):43–52.
  • Kim P, Bai H, Bai D, et al. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol. 2004;97(5):942–949.
  • Francius G, Dufour S, Deleu M, et al. Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Biochim Biophys Acta Biomembr 2008;1778:2058–2068.
  • Cho KM, Math RK, Hong SY, et al. Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Control. 2009;20(4):402–406.