1,696
Views
1
CrossRef citations to date
0
Altmetric
Articles

Defense-related genes induced by application of silver nanoparticles, ascorbic acid and salicylic acid for enhancing the immune response system of eggplant against invasion of root–knot nematode, Meloidogyne javanica

, , , &
Pages 917-933 | Received 22 Feb 2021, Accepted 31 May 2021, Published online: 21 Jun 2021

References

  • Tindall HD. Commercial vegetables growing. London: Oxford University Press; 1978, p. 129.
  • Usman A, Siddiqui MA. Effect of some fungal strains for the management of root–knot nematode (Meloidogyne incognita) on eggplant (Solanum melongena). J Agric Technol. 2012;8(1):213–218.
  • Sasser JN. Root–knot nematodes a global menace to crop production. Plant Dis. 1980;64(1):36–41.
  • Osman HA, Youssef MMA, El-Ginidi AY, et al. Effect of salicylic acid and Pseudomonas flourescens against Meloidogyne incognita in eggplant using split–root technique. Pak J Nematol. 2012;30(2):101–113.
  • Hassan MEM, Zawam HSS, El-Nahas EM, et al. Comparative study between silver nanoparticles and two nematicides against Meloidogyne incognita on tomato seedlings. Plant Pathol J. 2016;15(4):144–151.
  • Abid M, Zaki MJ, Khan MK, et al. Use of marine algae for the management of root–knot nematode (Meloidogyne javanica) in okra and tomato plant. Int J Phycol Phycochem. 2005;1:187–192.
  • Luc EJ, Wenjing P, Robin M, et al. Effects of formulation and host nematode density on the ability of in vitro-produced Pasteuria endospores to control its host Belonolaimus longicaudatus. J Nematol. 2010;42(2):87–90.
  • Crow WT, Luc JE, Giblin-Davis RM. Evaluation of EconemTM, a formulated Pasteuria sp. Bionematicide, for management of Belonolaimus longicaudatus on gulf course turf. J Nematol. 2011;43:101–109.
  • Osman HA, Youssef MMA, El-Ginidi AY, et al. Effect of abiotic resistance inducers, ɣ-amino-n-butric acid (GABA), ascorbic acid and chitosan on certain enzyme activities of eggplant inoculated with root–knot nematode Meloidogyne incognita. Arch Phytopathol Plant Protect. 2013;46(15):1857–1863.
  • Hagag ESF, Taha NAA, Hafez YM. Control of root–knot nematode (Meloidogyne incognita) on eggplant plants using biotic and abiotic inducers of resistance. Egypt J Biol Pest Control. 2016;26(2):269–275.
  • Ghareeb YR, Adss AI, Bayoumi SR, et al. The nematicidal potentiality of some algalextracts and their role in enhancement the tomato defense genes against rootknot–nematodes. Egypt J Biol Pest Control. 2019;29(1):53.
  • Sharma IP, Sharma AK. Application of arbuscular mycorrihiza for managing root–knot disease in tomato (Lycopersicon esculantum) under glass house conditions in Pantnagar. Afr J Microbiol Res. 2015;9(7):463–468.
  • Cromwell WA, Yang J, Starr JL, et al. Nematicidal effects of silver nanoparticles on root–knot nematode in Bermuda grass. J Nematol. 2014;46(3):261–266.
  • Abdellatif KF, Hamouda RA, El-Ansary MSM. Green nanoparticles engineering on root–knot nematode infecting eggplants and their effect on plant DNA modification. Iran J Biotechnol. 2016;14(4):250–259.
  • Ayoub SM. Plant nematology an agriculture training aid. Scrmento, California, USA: Nema. Aid. Publications; 1980. p. 195.
  • Taylor AL, Netscher C. An improved technique for preparing perineal patterns of Meloidogyne spp. Nematology. 1974;20(2):268–269.
  • Eisenback JD, Hirschmann H, Sasser JN, et al. A guide to the four most common species of root–knot nematodes (Meloidogyne spp.) with a pictorial key. A cooperative publication of the department of plant pathology and genetics. North Carolina: North Carolina State University and the United States Agency for International Development Raleigh; 1981.
  • Hussey RS, Barker KR. Comparison of methods for collecting inocula of Meloidogyne spp. including a new technique. Plant Dis Rep. 1973;57:1025–1028.
  • Lopez IA, Gomez I. Photoinduced shape transformation from nanospheres to silver triangular nanoprisms and nanodisks: citrate ion concentration and stirring effects. Rev Mex Fis. 2012;58:289–292.
  • Suh JS, DiLella DP, Moskovits M. Surface-enhanced Raman spectroscopy of colloidal metal systems: a two dimensional phase equilibrium in p-aminobenzoic acid adsorbed on silver. J Phys Chem. 1983;87(9):1540–1544.
  • Kim SC, Adesogan AT, Arthington JD. Optimizing nitrogen utilization in growing steers fed forage diets supplemented with dried citrus pulp. J Anim Sci. 2007;85(10):2548–2555.
  • Sharma R, Bisen DP, Shukla U, et al. X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Res Sci Technol. 2012;4(8):77–79.
  • Abramoff MD, Magalhães PJ, Ram SJ. Image processing with image. J Biophoton Int. 2004;11(7):36–41.
  • Seham M, Hamed A, Mostafa MA, et al. Biosynthesis of silver and silver chloride nanoparticles by Parachlorella kessleri SAG 211-11 and evaluation of its nematicidal potential against the root–knot nematode Meloidogyne incognita. Aust J Basic Appl Sci. 2016;10(18):354–364.
  • Safdar H, Javed N, Aleem KS, et al. Control of Meloidogyne incognita (Kofoid and White) chitwood by cadusafos (Rugby)® on tomato. Pak J Zod. 2012;44(66):1703–1710.
  • Barker KR. Nematode extraction and bioassay. In: Barker KR, Carter CC, Sasser JN, editors. An advanced treatise on meloidogyne, vol 11: methodology. Raleigh, North Carolina, USA: North Carolina State University Graphics; 1985. p. 19–35.
  • Maxwell DP, Beteman DF. Changes in the activities of some oxidase in extracts of Rhizoctonia infected bean hypocotyls in relation to lesion maturation. Phytopathology. 1967;57:132–136.
  • Allam AI, Hollis JP. Sulphide inhibition of oxidase in rice roots. Phytopathology. 1972;62(6):634–639.
  • Srivastava SK. Peroxidase and poly phenol oxidase in Brassica juncea plants infected with Macrophomina phaseolina (Tassai) Goid. and their implication in disease resistance. 1987;120(3):249–254.
  • Gomez KA, Gomez A. Statistical procedures for agricultural research. 2nd ed.New York: Wiley; 1984.
  • Duncan D. Multiple ranges and multiple F test. Biometrics. 1955;11(1):1–42.
  • Starr RJ, Yang W, Yan Y, et al. Expression of phenylalanine ammonia lyase genes in maize lines differing in susceptibility to Meloidogyne incognita. J Nematol. 2014;46(4):360–364.
  • Jogaiah SM, Abdelrahman LP, Shin-ichi I. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J Exp Bot. 2013;64(12):3829–3842.
  • Karajeh M, Mohawesh O. Root–knot nematode (Meloidogyne javanica)-deficit irrigation interactions on eggplant cropped under open field condition. J Horticult Res. 2016;24(1):73–78.
  • Raza MA, Kanwal Z, Rauf A, et al. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials (Basel). 2016;6(4):74.
  • Moslemi F, Fatemy S, Bernard F. Inhibitory effects of salicylic acid on Meloidogyne javanica reproduction in tomato plants. Span J Agric Res. 2016;14(1):e1001.
  • Mostafanezhad H, Sahebani N, Nourinejhad Zarghani S. Control of root–knot nematode (Meloidogyne javanica) with combination of Arthrobotrys oligospora and salicylic acid and study of some plant defense responses. Biocontrol Sci Tech. 2014;24(2):203–215.
  • Mukherjee A, Babu SS, Mandal F. Potential of salicylic acid activity derived from stress-induced (water) tomato against Meloidogyne incognita. Arch Phytopathol Plant Prot. 2012;45(16):1909–1916.
  • Molinari S. Effect of salicylic acid on Meloidogyne–tomato interaction. Proc. of the 11th Congress of the Mediterranean Phytopathological Union., September 17–20, Evora. Portugal. 2001a. 412–413.
  • Molinari S. Inhibition of H2O2-degrading enzymes in the response of Mi-bearing tomato to root–knot nematodes and salicylic acid treatment. Nematol Medit. 2001b;29:235–239.
  • Nandi B, Sukul NC, Babu SPS. Exogenous salicylic acid reduces Meloidogyne incognita infestation of tomato. Allelopathy J. 2000;7:285–288.
  • Nandi B, Sukul NC, Banerjee N. Salicylic acid enhances resistance in cowpea against Meloidogyne incognita. Phytopathol Mediterr. 2002;41:39–44.
  • Ghareeb RY, Alfy H, Fahmy AA, et al. Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Sci Rep. 2020;10(1):19968
  • Fraissinet-Tachet L, Baltz R, Chong J, et al. Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyl transferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. Fed Eur Biochem Soc Lett. 1998;437(3):319–323.
  • Ding F, Dokholyan NV, Buldyrev SV, et al. Direct molecular dynamics observation of protein folding transition state ensemble. Biophys J. 2002;83(6):3525–3532.
  • Thulke OU, Conrath U. Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant J. 1998;14(1):35–42.
  • Klessig DF, Durner J, Noad R, et al. Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA. 2000;97(16):8849–8855.
  • Canet JV, Canet A, Dobon F, et al. Resistance and biomass in Arabidopsis: a new model for salicylic acid perception. Plant Biotechnol J. 2010a;8(2):126–141.