1,254
Views
4
CrossRef citations to date
0
Altmetric
Articles

Tetracycline removal from model aqueous solutions by pretreated waste Streptomyces fradiae biomass

, , &
Pages 953-963 | Received 04 Mar 2021, Accepted 31 May 2021, Published online: 30 Jun 2021

References

  • Richardson BJ, Lam PKS, Martin M. Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Mar Pollut Bull. 2005; 50(9):913–920.
  • Ashton D, Furlong ET, Meyer MT, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol. 2002; 36:1202–1211.
  • Paffoni C, Welte B, Gousailles M, et al. New molecules involved by the European directives: from wastewater to drinking water treatment plants. J Eur Hydrol. 2006; 37:21–38.
  • Bush K. Antimicrobial agents. Curr Opin Chem Biol. 1997; 1(2):169–175.
  • Daghrir R, Drogui P. Tetracycline antibiotics in the environment: a review. Environ Chem Lett. 2013;11(3):209–227.
  • Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001; 65(2):232–260.
  • Aghuw KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006; 58(2):256–265.
  • Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin. Environ Sci Technol. 2011; 45:1827–1833.
  • Bai Y, Meng W, Xu J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China. Environ Sci Process Impacts. 2014; 16:586–593.
  • Spongberg AL, Witter JD. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci Total Environ. 2008;397(1–3):148–157.
  • Li SZ, Li XY, Wang DZ. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Sep Purif Technol. 2004;34(1–3):109–114.
  • Kosutic K, Dolar D, Asperger D, et al. Removal of antibiotics from a model wastewater by RO/NF membranes. Sep Purif Technol. 2007;53(3):244–249.
  • Jiao S, Zheng S, Yin D, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere. 2008; 73:377–382.
  • Zhang H, Liu F, Wu X, et al. Degradation of tetracycline in aqueous medium by electrochemical method. Asia-Pacific Jrnl of Chem Eng. 2009;4(5):568–573.
  • Daghrir R, Drogui P, Ka I, et al. Photoelectro-catalytic degradation of chlortetracycline using Ti/TiO2 nano-structured electrodes deposited by means of a pulsed laser deposition process. J Hazard Mater. 2012; 199–200:15–24.
  • Xiang Y, Xu Z, Wei Y, et al. Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors. J Environ Manag. 2019; 237:128–138.
  • Turku I, Sainio T, Paatero E. Thermodynamics of tetracycline adsorption on silica. Environ Chem Lett. 2007;5(4):225–228.
  • Guler UA, Sarioglu M. Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. J Environ Health Sci Eng. 2014; 12(1):79.
  • Kang J, Liu H, Zheng YM, et al. Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. J Colloid Interface Sci. 2010; 344(1):117–125.
  • Zhang X, Lin X, He Y, et al. Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Int J Biol Macromol. 2019;124(1):418–428. 2019;
  • Cavas L, Gokoglu M. Caulerpa scalpelliformis as an antibiotic carrier. Turk J Biochem. 2011; 36(2):93–101.
  • Li WC, Wong MH. A comparative study on tetracycline sorption by Pachydictyon coriaceum and Sargassum hemiphyllum. Int J Environ Sci Technol. 2015;12(8):2731–2740.
  • Chen X, Jiang X, Yin C, et al. Facile fabrication of hierarchical porous ZIF-8 for enhanced adsorption of antibiotics. J Hazard Mater. 2019; 367:194–204.
  • Zhao R, Ma T, Zhao S, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chem Eng J. 2020; 382:122893.
  • Li K, Li JJ, Zhao N, et al. Removal of tetracycline in sewage and dairy products with high-stable MOF. Molecules. 2020; 25(6):1312.
  • Ahamad T, Ruksana Chaudhary AA, et al. Fabrication of MnFe2O4 nanoparticles embedded chitosan-diphenylureaformaldehyde resin for the removal of tetracycline from aqueous solution. Int J Biol Macromol. 2019; 134:180–188.
  • Li B, Ma J, Zhou L, et al. Magnetic microsphere to remove tetracycline from water: adsorption, H2O2 oxidation and regeneration. Chem Eng J. 2017; 330:191–201.
  • Lin Y, Xu S, Jia L. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chem Eng J. 2013; 225:679–685.
  • Erşan M. Removal of tetracycline using new biocomposites from aqueous solutions. Desal Wat Treat. 2016;57(21):9982–9992.
  • Kip F, Açıkel Ü. Removal of tetraclycine by biocomposites synthesized with immobilization of Rhizopus delamar and Candida types. J Fac Eng Archit Gazi Univ. 2019; 34(3):1417–1426.
  • Sahmoune MN. Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J. 2018; 141:87–95.
  • Kirova G, Velkova Z, Stoytcheva M, et al. Biosorption of Pb(II) ions from aqueous solutions by waste biomass of Streptomyces fradiae pretreated with NaOH. Biotechnol Equip. 2015; 29(4):689–695.
  • Mondal MK. Removal of Pb(II) from aqueous solution by adsorption using activated tea waste. Korean J Chem Eng. 2010; 27(1):144–151.
  • Bayramoğlu G, Celik G, Arica MY. Biosorption of reactive blue 4 dye by native and treated fungus Phanerocheate chrysosporium: batch and continuous flow system studies. J Hazard Mater. 2006; 137:1689–1697.
  • Veneu DM, Pino GAH, Torem ML, et al. Biosorptive removal of cadmium from aqueous solutions using a Streptomyces lunalinharesii strain. Miner Eng. 2012; 29:112–120.
  • Cojocaru C, Diaconu M, Cretescu I, et al. Biosorption of copper (II) ions from aqua solutions using dried yeast biomass. Colloid Surface A Physicochem Eng Asp. 2009; 335(1-3):181–188.
  • Han MH, Yun YS. Mechanistic understanding and performance enhancement of biosorption of reactive dyes tuffs by the waste biomass generated from amino acid fermentation process. Biochem Eng J. 2007;36(1):2–7.
  • Romera E, González F, Ballester A, et al. Biosorption with algae: a statistical review. Crit Rev Biotechnol. 2006; 26:223–235.
  • Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol. 2009;2009(84):13–28.
  • Liu Y, Liu YJ. Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol. 2008;2008(61):229–242.
  • Sağ Y, Aktay Y. Kinetic studies on sorption of Cr (VI) and Cu (II) ions by chitin, chitosan and Rhizopus arrhizus. Biochem Eng J. 2002; 12(2):143–153.
  • Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451–465.
  • Göksungur Y, Üren S, Güvenç U. Biosorption of copper (II) ions by caustic treated waste Baker’s yeast biomass. Turk J Biol. 2003; 27:23–29.
  • Das N, Charumathi D, Vimala R. Effect of pretreatment on Cd2+ biosorption by mycelial biomass of Pleurotus florida. Afr J Biotechnol. 2007; 6(22):2555–2558.
  • Patel R, Suresh S. Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour Technol. 2008; 99(1):51–58.
  • Göksungur Y, Üren S, Güvenç U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol. 2005; 96:103–109.
  • Xu XR, Li XY. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere. 2010; 78(4):430–436.
  • Hsu LC, Liu YT, Syu CH, et al. Adsorption of tetracycline on Fe (hydr)oxides: effects of pH and metal cation (Cu2+, Zn2+and Al3. +). R Soc Open Sci. 2018; 5(3):171941.
  • Sayğılı H, Güzel F. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste. Ecotoxicol Environ Saf. 2016; 131:22–29.
  • Zhu H, Chen T, Liu J, et al. Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Adv. 2018;8(5):2616–2621.