1,035
Views
3
CrossRef citations to date
0
Altmetric
Articles

Menadione and hydrogen peroxide trigger specific alterations in RNA polymerases profiles in quiescent Saccharomyces cerevisiae cells

, , , , &
Pages 1190-1199 | Received 16 Mar 2021, Accepted 05 Jun 2021, Published online: 06 Aug 2021

References

  • Hamadeh H, Amin R, Paules R, et al. An over view of toxicogenomics. Curr Issues Mol Biol. 2002;4:45–56.,
  • North M, Vulpe C. Functional toxicogenomics: mechanism-centered toxicology. IJMS. 2010;11(12):4796–4813.
  • Mroczek S, Kufel J. Apoptotic signals induce specific degradation of ribosomal RNA in yeast. Nucleic Acids Res. 2008;36(9):2874–2888.
  • Rodrigues-Pousada C, Devaux F, Caetano S, et al. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. Microb Cell. 2019;6(6):267–285.,
  • Simmons P, Portier C. Toxicogenomics: the new frontier in risk analysis. Carcinogenesis. 2002;23(6):903–905.
  • Kim T, Liu C, Yassour M, et al. RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast. Genome Biol. 2010;11(7):R75.,
  • Dos Santos S, Teixeira M, Cabrito T, et al. Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Front Genet. 2012;3:63.
  • Braconi D, Bernardini G, Santucci A. Saccharomyces cerevisiae as a model in ecotoxicological studies: a post-genomics perspective. J Proteomics. 2016;137:19–34.
  • Suarez-Diez M, Porras S, Laguna-Teno F, et al. Toxicological response of the model fungus Saccharomyces cerevisiae to different concentrations of commercial graphene nanoplatelets. Sci Rep. 2020;10(1):3232.,
  • Gasch A, Spellman P, Kao C, et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–4257.
  • Foury F. Human genetic diseases: a cross-talk between man and yeast. Gene. 1997;195(1):1–10.
  • Hohmann S, Mager W. Stress response mechanisms in the yeast Saccharomyces cerevisiae. In: Hohmann S, Mager W , editors. Yeast Stress Responses. Austin (TX): Molecular Biology Intelligence Unit, R.G. Landes Company; 1997. p. 1–5.
  • Parsons L, Bonander N, Eisenstein E, et al. Solution structure and functional ligand screening of HI0719, a highly conserved protein from bacteria to humans in the YjgF/YER057c/UK114 family. Biochemistry. 2003;42(1):80–89.,
  • Mager W, Winderickx J. Yeast as a model for medical and medicinal research. Trends Pharmacol Sci. 2005;26(5):265–273.
  • Smith A, Ammar R, Nislow C, et al. A survey of yeast genomic assays for drug and target discovery. Pharmacol Ther. 2010;127(2):156–164.,
  • Conesa C, Ruotolo R, Soularue P, et al. Modulation of yeast genome expression in response to defective RNA polymerase III-dependent transcription. Mol Cell Biol. 2005;25(19):8631–8642.,
  • Bon M, McGowan SJ, Cook PR. Many expressed genes in bacteria and yeast are transcribed only once per cell cycle. Faseb J. 2006;20(10):1721–1723.
  • Pelechano V, Chávez S, Pérez-Ortín JE. A complete set of nascent transcription rates for yeast genes. PLoS One. 2010;5(11):e15442.
  • Osheim YN, French SL, Sikes ML, et al. Electron microscope visualization of RNA transcription and processing in Saccharomyces cerevisiae by Miller chromatin spreading. Methods Mol Biol. 2009;464:55–69.,
  • Albert B, Léger-Silvestre I, Normand C, et al. RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J Cell Biol. 2011;192(2):277–293.
  • Roche B, Arcangioli B, Martienssen R. Transcriptional reprogramming in cellular quiescence. RNA Biol. 2017;14(7):843–853.
  • Briand J, Navarro F, Gadal O, et al. Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol. 2001;21(1):189–195.,
  • Clarke E, Peterson C, Brainard A, et al. Regulation of the RNA polymerase I and III transcription systems in response to growth conditions. J Biol Chem. 1996;271(36):22189–22195.
  • Warner J. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999;24(11):437–440.
  • Zaragoza D, Ghavidel A, Heitman J, et al. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol. 1998;18(8):4463–4470.,
  • Pillai B, Verma J, Abraham A, et al. Whole genome expression profiles of yeast RNA polymerase II core subunit, Rpb4, in stress and nonstress conditions. J Biol Chem. 2003;278(5):3339–3346.
  • Garrido-Godino AI, Garcıa-Lopez MC, Garcıa-Martınez J, et al. Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast. BBA - Gene Regulatory Mechanisms. 2016; 1859(5):731–743
  • Allen C, Büttner S, Aragon A, et al. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol. 2006;174(1):89–100.
  • Collart M, Oliviero S. Preparation of yeast RNA. In: Current protocols in molecular biology. New York: John Wiley & Sons, Inc; 1993. p. 13.12.1–13.12.5.
  • Schägger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991;199(2):223–231.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685.
  • Aranda P, La Joie D, Jorcyk C. Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality. Electrophoresis. 2012;33(2):366–369.
  • Wilfinger W, Mackey K, Chomczynski P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques. 1997;22(3):474–481.
  • Young CP, Hillyer C, Hokamp K, et al. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genomics. 2017;18(1):107.
  • Aragon AD, Quinones GA, Thomas EV, et al. Release of extraction-resistant mRNA in stationary phase Saccharomyces cerevisiae produces a massive increase in transcript abundance in response to stress. Genome Biol. 2006;7(2):R9.,
  • Carter R, Drouin G. Structural differentiation of the three eukaryotic RNA polymerases. Genomics. 2009;94(6):388–396.
  • Cramer P. Multisubunit RNA polymerases. Curr Opin Struct Biol. 2002;12(1):89–97.
  • Best A, Morrison H, McArthur A, et al. Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. Genome Res. 2004;14(8):1537–1547.
  • Pócsi I, Miskei M, Karányi Z, et al. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures-linking genome-wide transcriptional changes to cellular physiology . BMC Genomics. 2005;6:182.
  • Toledano M, Delaunay A, Biteau B, et al. Oxidative stress responses in yeast. In: Hohman S, Mager W, editors. Yeast Stress Responses. Berlin: Springer-Verlag; 2003. p. 305–387.
  • Pócsi I, Prade R, Penninckx M. Glutathione, altruistic metabolite in fungi. Adv Microb Physiol. 2004;49:1–76.
  • Roche B, Arcangioli B, Martienssen R. RNA interference is essential for cellular quiescence. Science. 2016;354(6313):aah5651.
  • Galdieri L, Mehrotra S, Yu S, et al. Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS. 2010;14(6):629–638.,
  • Choder M, Young R. A Portion of RNA Polymerase II molecules has a component essential for stress responses and stress survival. Mol Cell Biol. 1993;13(11):6984–6991.
  • Chuang Y, Chen Y, Chandramouli V, et al. Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 2002;62(21):6246–6254.,
  • Allepuz-Fuster P, O’Brien M, González-Polo N, et al. RNA polymerase II plays an active role in the formation of gene loops through the Rpb4 subunit. Nucleic Acids Res. 2019;47(17):8975–8987.,
  • Hampsey M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev. 1998;62(2):465–503.
  • Gasch A, Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics. 2002;2(4-5):181–192.
  • Breker M, Gymrek M, Schuldiner M. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol. 2013;200(6):839–850.
  • Choder M. A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. Genes Dev. 1991;5(12A):2315–2326.
  • Shedlovskiy D, Zinskie J, Gardner E, et al. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. J Biol Chem. 2017;292(45):18469–18485.