1,041
Views
2
CrossRef citations to date
0
Altmetric
Articles

Transcriptome analysis of soybean leaves response to manganese toxicity

, , &
Pages 1043-1051 | Received 03 Mar 2021, Accepted 28 Jun 2021, Published online: 12 Jul 2021

References

  • Goussias C, Boussac A, Rutherford AW. Photosystem II and photosynthetic oxidation of water: an overview. Philos Trans R Soc Lond B Biol Sci. 2002;357(1426):1369–1381; discussion 1419–1420.
  • Li P, Song A, Li ZJ, et al. Transcriptome analysis in leaves of rice (Oryza sativa) under high manganese stress. Biologia. 2017;72(4):388–397.
  • Chen ZH, Walker RP, Acheson RM, et al. Phosphoenolpyruvate carboxykinase assayed at physiological concentrations of metal ions has a high affinity for CO2. Plant Physiol. 2002;128(1):160–164.
  • Ducic T, Polle A. Transport and detoxification of manganese and copper in plants. Braz J Microbiol. 2005;17:103–112.
  • Gonzalez A, Steffen KL, Lynch JP. Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol. 1998;118(2):493–504.
  • Lidon FC, Barreiro MG, Ramalho JC. Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol. 2004;161(11):1235–1244.
  • Ribera AE, Reyes-Díaz MM, Alberdi MR, et al. Photosynthetic impairment caused by manganese toxicity and associated antioxidative responses in perennial ryegrass. Crop Pasture Sci. 2013;64(7):696–707.
  • Shi QH, Zhu ZJ, Xu M, et al. Effect of excess manganese on the antioxidant systemin Cucumis sativus L. under two light intensities. Environ Exp Bot. 2006;58(1-3):197–205.
  • Li J, Jia Y, Dong R, et al. Advances in the mechanisms of plant tolerance to manganese toxicity. Int J Mol Sci. 2019; 20(20):5096.
  • Lee TJ, Luitel BP, Kang WH. Growth and physiological response to manganese toxicity in Chinese cabbage (Brassica rapa L. ssp. campestris. Hortic Environ Biotechnol. 2011;52(3):252–258.
  • Marschner P. Mineral nutrition of higher plants. Boston, MA: Academic Press, 2012.
  • Führs H, Behrens C, Gallien S, et al. Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare). Ann Bot. 2010; 105(7):1129–1140.
  • Peiter E, Montanini B, Gobert A, et al. A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci USA. 2007;104(20):8532–8537.
  • Chen Z, Sun L, Liu P, et al. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis. Plant Physiol. 2015;167(1):176–188.
  • Sheng H, Zeng J, Liu Y, et al. Sulfur mediated alleviation of Mn toxicity in polish wheat relates to regulating Mn allocation and improving antioxidant system. Front Plant Sci. 2016;7:1382.
  • Yang S, Yi K, Chang MM, et al. Sequestration of Mn into the cell wall contributes to Mn tolerance in sugarcane (Saccharum officinarum L.). Plant Soil. 2019;436(1-2):475–487.
  • Ribera-Fonseca A, Inostroza-Blancheteau C, Cartes P, et al. Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass. Plant Physiol Biochem. 2013;73:77–82.
  • Chen Z, Fujii Y, Yamaji N, et al. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp Bot. 2013;64(14):4375–4387.
  • Takemoto Y, Tsunemitsu Y, Fujii-Kashino M, et al. The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant Cell Physiol. 2017;58(9):1573–1582.
  • Wu Z, Liang F, Hong B, et al. An endoplasmic reticulum-bound Ca(2+)/Mn(2+) pump, ECA1, supports plant growth and confers tolerance to Mn(2+) stress. Plant Physiol. 2002;130(1):128–137.
  • Sasaki A, Yamaji N, Xia J, et al. OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiol. 2011;157(4):1832–1840.
  • Andrew CS, Hegarty MP. Comparative responses to manganese excess of eight tropical and four temperate pasture legume species. Aust J Agric Res. 1969;20(4):687–696.
  • Yan W, Liu GD, Tian J. Effects of manganese availability on acquisition and distribution of manganese, iron and phosphorus in soybean [Glycine max (L.) Merr.]. Plant Physiol Commun. 2010;46:923–927. (in Chinese)
  • Chen Z, Wei Y, Sun L, et al. Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. J Proteomics. 2016;143:151–160.
  • Zhang XN, Piao CL, Dong YK, et al. [Transcriptome analysis of response to heavy metal Cd stress in soybean root]. Ying Yong Sheng Tai Xue Bao. 2017;28(5):1633–1641.
  • Jia Y, Li X, Liu Q, et al. Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of Stylosanthes to manganese toxicity. BMC Genomics. 2020;21(1):861.
  • Liu Y, Xue Y, Xie B, et al. Complex gene regulation between young and old soybean leaves in responses to manganese toxicity. Plant Physiol Biochem. 2020;155:231–242.
  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–457.
  • Xue YB, Xiao BX, Zhu SN, et al. GmPHR25, a GmPHR member up-regulated by phosphate starvation, controls phosphate homeostasis in soybean. J Exp Bot. 2017;68(17):4951–4967.
  • Yin X, Hiraga S, Hajika M, et al. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean. Plant Mol Biol. 2017;93(4-5):479–496.
  • Schmutz J, Cannon SB, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–183.
  • Yang L, Xu Y, Zhang R, et al. Comprehensive transcriptome profiling of soybean leaves in response to simulated acid rain. Ecotoxicol Environ Saf. 2018;158:18–27.
  • Tran LS, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA. 2007;104(51):20623–20628.
  • Gao Y, Wu M, Zhang M, et al. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol. 2018;97(4-5):311–323.
  • Peethambaran PK, Glenz R, Höninger S, et al. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC Plant Biol. 2018;18(1):311.
  • Herrera-Vásquez A, Fonseca A, Ugalde JM, et al. TGA class II transcription factors are essential to restrict oxidative stress in response to UV-B stress in Arabidopsis. J Exp Bot. 2020;72(5):1891–1905.
  • Rong W, Qi L, Wang A, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J. 2014;12(4):468–479.