1,029
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimised production of protein elicitor AMEP412 by Bacillus subtilis BU412 through response surface methodology

, &
Pages 1058-1064 | Received 27 Apr 2021, Accepted 06 Jul 2021, Published online: 22 Jul 2021

References

  • Jones JD, Dang JL. The plant immune system. Nature. 2006;444(7117):323–329.
  • Mishra AK, Sharma K, Misra RS. Elicitor recognition, signal transduction and induced resistance in plants. J Plant Interact. 2012;7(2):95–120.
  • Schwessinger B, Ronald PC. Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol. 2012;63(1):451–482.
  • Shen Y, Li J, Xiang J, et al. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Express. 2019;9(1):117.
  • Schaad NW, Jones Jb CW. Laboratory guide for the identification of plant pathogenic bacteria. St. Paul (MN): The American Phyto-pathological Society. 2001.
  • Akhazarova S, Kavarov V. Experiments optimization in chemistry and chemical engineering. Moscow: Mir Publishers; 1982.
  • Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika. 1946;33(4):305–325.
  • Montgomery DC. Design and analysis of experiments. 6th ed. New York (NY): Wiley; 2000.
  • Khuri AI, Cornell JA. Response surfaces: design and analysis. New York (NY): Marcel Dekker; 1987.
  • Deepak V, Kalishwaralal K, Ramkumarpandian S, et al. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresour Technol. 2008;99(17):8170–8174.
  • Du R, Zhao F, Qiao X, et al. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1. Prep Biochem Biotechnol. 2018;48(8):768–774.
  • Mizumoto S, Shoda M . Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl Microbiol Biotechnol. 2007;76(1):101–108.
  • Wei YH, Wang LC, Chen WC, et al. Production and characterization of Fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. Int J Mol Sci. 2010;11(11):4526–4538.
  • Bagewadi ZK, Mulla SI, Shouche Y, et al . Xylanase production from Penicillium citrinumisolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech. 2016;6(2):164.
  • Wei ZM, Laby RJ, Zumof CH, et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science. 1992;257(5066):85–88.
  • Che FS, Nakajima Y, Tanaka N, et al. Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. J Biol Chem. 2000; 275(41):32347–32356.
  • Hanania U, Avni A. High affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. Plant J. 1997;12(1):113–120.
  • Mao J, Liu Q, Yang X, et al. Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor-mediated defence responses in tobacco. Ann Appl Biol. 2010;156(3):411–420.
  • Ma Z, Zhu L, Song T, et al . A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science. 2017;355(6326):710–714.
  • Dave BR, Parmar P, Sudhir A, et al. Optimization of process parameters for cellulase production by Bacillus licheniformis MTCC 429 using RSM and molecular characterization of cellulase gene. J Bioprocess Biotech. 2015;5(3):1000212.
  • Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005;56(4):845–857.
  • Liu Q, Shen Y, Yin K. The antimicrobial activity of protein elicitor AMEP412 against Streptomyces scabiei. World J MicrobBiot. 2020;36(1):18.
  • Acharya BK, Mohana S, Jog R, et al. Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation. J Environ Manage. 2010;91(10):2019–2027.
  • Moita C, Feio SS, Nunes L, et al. Optimisation of physical factors on the production of active metabolites by Bacillus subtilis 355 against wood surface contaminant fungi. Int Biodeter Biodeg. 2005;55(4):261–269.
  • Grahovac J, Rončević Z, Tadijan IŽ, et al. Optimization of media for antimicrobial compounds production by Bacillus subtilis. Acta Aliment. 2015;44(3):427–435.
  • El-Banna NM. Effect of carbon source on the antimicrobial activity of the air flora. World J Microbiol Biotechnol. 2005;21(8–9):1451–1454.
  • El-Banna NM, Quddoumi SS. Effect of nitrogen source on the antimicrobial activity of the bacilli air flora. Ann Microbiol. 2007;57(4):669–671.
  • Nelly A. Determination of C/N Ratio and development of bioinsecticide production by Bacillus thuringiensis using tofu waste cultivation media. Int J Food Microbiol. 2012;160(2):119–123.
  • Samantaray DP, Dash A. Effect of carbon/nitrogen (C/N) ratio on polyhydroxyalkanoates (PHAs) production by Bacillus species under submerged fermentation process. JEnviron Biol. 2020;41(1):118–124.
  • Liu Q, Zhang B, Shen Y, et al. Effect of the protein elicitor AMEP412 from Bacillus subtilis artificially fed to adults of the whitefly, Bemisiatabaci (Genn.) (Hemiptera: Aleyrodidae). Egyp J Biol Pest Co. 2020;30:3.