844
Views
0
CrossRef citations to date
0
Altmetric
Articles

Identification of candidate genes associated with JA under elevated CO2 in carrot (Daucus carota L.)

, & ORCID Icon
Pages 1065-1075 | Received 21 Mar 2021, Accepted 07 Jul 2021, Published online: 26 Jul 2021

References

  • Ma J, Li J, Xu Z, et al. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Acta Biochim Biophys Sin (Shanghai). 2018;50(5):481–490.
  • Zhang ZH, Sun S, Liu Y, et al. Effects of CO2 enrichment on photosynthetic characteristics of greenhouse tomato during fruiting stage. Chin J Ecol. 2018;37(5):1398–1402.
  • Kimball BA, Kobayashi K, Bindi M. Response of agricultural crops to free air CO2 enhancement. Adv Agron. 2002;77:293–368.
  • Reddy AR, Rasineni GK, Raghavendra AS. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci. 2010;99(1):46–57.
  • Mamatha H, Rao NK, Laxman RH, et al. Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish. Photosynt. 2014;52(4):519–528.
  • Yang DG, Zhang XD. Progress of jasmonates and its signal transduction pathway. Biotechnol Bull. 2009;(2):43–49.
  • Wu JS, Chong K. The molecular biology research on the action of jasmonates. Chin Bull Botany. 2002;19(2):164–170.
  • Jiang KJ, Pi Y, Hou R, et al. Jasmonate biosynthetic pathway: its physiological role and potential application in plant secondary metabolic engineering. Chin Bull Botany. 2010;45(2):137–148.
  • Teng N, Wang J, Chen T, et al. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol. 2006;172(1):92–103.
  • Wang G, Huang W, Li M, et al. Expression profiles of genes involved in jasmonic acid biosynthesis and signaling during growth and development of carrot. Acta Biochim Biophys Sin (Shanghai). 2016;48(9):795–803.
  • Wang Q. Study on the effects of high-concentration carbon dioxide on the endogenous hormones and organic acid content of rice seedlings [dissertation]. Shenyang (China): Shenyang Normal University; 2019.
  • Song H, Li Y, Xu X, et al. Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.). Sci Hortic. 2020;261:108988.
  • Deng A, Tan W, He S, et al. Monoclonal antibody-based enzyme linked immunosorbent assay for the analysis of jasmonates in plants. J Integr Plant Biol. 2008;50(8):1046–1052.
  • Sun M, Qi X, Hou L, et al. Gene expression analysis of Pak Choi in response to vernalization. Plos One. 2015;10(10):e0141446.
  • Wang WM, Wang C, Li C. Effects of elevated atmospheric CO2 concentrations on growth of plants. Acta Bot Bor Occid Sin. 2000;20(4):676–683.
  • Chen H, Tan XF. Identification of linolenic acid metabolism pathway based on transcriptome data of Vernicia fordii kernels during tung oil synthesis stage. Sci Sil Sin. 2015;51(3):41–48.
  • Gong CR, Li YM, Yang LJ. Relationship between lox activity and SA and JA accumulations in tobacco leave under water stress. Sci Agri Sin. 2003;36(003):269–272.
  • Zhang C, Jin Y, Liu J, et al. The phylogeny and expression profiles of the lipoxygenase (LOX) family genes in the melon (Cucumis melo L.) genome. Sci Hortic. 2014;170:94–102.
  • Lian QL, Li XX, Zhong XH. Cloning and expression analysis of allene oxide cyclase gene GhAOC from Gladiolus hybridus. J China Agri Univ. 2012;17(5):46–53.
  • Stenzel I, Otto M, Delker C, et al. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. J Exp Bot. 2012;63(17):6125–6138.
  • Wang LM, Zhu YM, Tong XC, et al. Molecular cloning and characterization of an Allene Oxide Cyclase gene associated with fiber strength in cotton. J Integ Agri. 2014;13(10):2113–2121.
  • Chen LL, Wang YR, Guo YF, et al. Cloning and expression analysis of jasmonic acid carboxyl methyltransferase gene (JMT) in sugarcane (Saccharum spp. hybrids). J Agri Biotechnol. 2020;28(11):1936–1946.
  • Xue RH, Zhang B. Increased endogenous methyl jasmonate altered leaf and root development in transgenic soybean plants. J Genet Genomics. 2007;34(4):339–346.
  • Adam R, Magdalena AW. M. Genes encoding cucumber full-size ABCG proteins show different responses to plant growth regulators and Sclareolide. Plant Mol Biol Report. 2016;34:720–736.
  • Sun Y. Study on stress tolerance of Arabidopsis glycosyltransferase gene [dissertation]. Jinan (CHN): Shandong University; 2013.
  • Chini A, Fonseca S, Fernández G, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature. 2007;448(7154):666–671.
  • SchererGuenther FE. Patatin like phospholipase A genes from Arabidopsis are involved in auxin functions. Catedra Nova. 2003;2013:123–128.
  • Hall AE, Findell JL, Schaller GE, et al. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol. 2000;123(4):1449–1458.
  • Rodrigues A, Adamo M, Crozet P, et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein Kinase1 Signaling in Arabidopsis. Plant Cell. 2013;25(10):3871–3884.
  • Kuromori T, Miyaji T, Yabuuchi H, et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A. 2010;107(5):2361–2366.
  • Barry SC, Cooper DNW, Hamilton TA, et al. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 1996;9(4):525–535.
  • Guan P, Wang R, Nacry P, et al. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc Natl Acad Sci U S A. 2014;111(42):15267–15272.
  • Kong YZ, Zhou GK, Yin YB, et al. Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases. Plant Physiol. 2011;155(4):1791–1805.
  • Ikeda M, Mitsuda N, Ohme-Takagi M. ATBS1 INTERACTING FACTORs negatively regulate Arabidopsis cell elongation in the triantagonistic bHLH system. Plant Signal Behav. 2013;8(3):e23448.
  • Chen XL, Wang AX, Zhang ZZ, et al. Genome-wide identification and bioinformatics analysis of NAC gene family in tomato. Plant Physiol Commun. 2014;50(4):461–470.
  • Fang ZH, Liu JN, Zhang Y, et al. Bioinformatics analysis of NAC gene family in bothriochloa ischaemum. Acta Agres Sin. 2020;28(05):98–106.
  • Fu L, Yu X, An C. OsCPK20 positively regulates Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. Acta Physiol Plant. 2014;36(2):273–282.
  • Jung C, Zhao P, Seo JS, et al. PLANT U-BOX PROTEIN10 regulates MYC2 Stability in Arabidopsis. Plant Cell. 2015;27(7):2016–2031.
  • Aguilar-Benitez D, Rubio J, Millán T, et al. Genetic analysis reveals PDH1 as a candidate gene for control of pod dehiscence in chickpea. Mol Breeding. 2020;40(4):40.
  • Wu R, Zhang F, Liu L, et al. MeNA, controlled by reversible methylation of nicotinate, is a NAD precursor that undergoes long-distance transport in Arabidopsis. Mol Plant. 2018;11(10):1264–1277.
  • Todd J, Post-Beittenmiller D, Jaworski JG. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J. 1999;17(2):119–130.
  • Hussain RMF, Kim HK, Khurshid M, et al. Overexpression of AtWRKY50 is correlated with enhanced production of sinapic derivatives in Arabidopsis. Metabolomics. 2018;14(3):25.
  • Takase T, Nakazawa M, Ishikawa A, et al. DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol. 2003;44(10):1071–1080.
  • Ballhorn DJ, Reisdorff C, Pfanz H. Quantitative effects of enhanced CO2 on jasmonic acid induced plant volatiles of lima bean (Phaseolus lunatus L.). J Appl Botany Food Qual. 2012;84(1):65–71.
  • Fatma K, Zhao W, Richards JT, et al. Transcriptional and metabolic insights into the differential physiological responses of Arabidopsis to optimal and supraoptimal atmospheric CO2. Plos One. 2012;7(8):e43583.
  • Zhang FF, Wang YL, Huang ZZ, et al. Effects of CO2 enrichment on growth and development of impatiens hawkeri. SciWorldJ. 2012;2012:601263.
  • Zhao TH, Wang MY, Zhang WW, et al. Effects of elevated atmospheric CO2 concentration on plant photosynthesis. Ecol Environ. 2006;15(5):1096–1100.
  • Huang L, Ren Q, Sun Y, et al. Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in tomato. Plant Biol (Stuttg). 2012;14(6):905–913.
  • Sun Y, Guo H, Zhu-Salzman K, et al. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Plant Sci. 2013;210:128–140.