3,572
Views
5
CrossRef citations to date
0
Altmetric
Review

Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants

, , , , , & show all
Pages 1214-1229 | Received 16 Mar 2021, Accepted 20 Jul 2021, Published online: 11 Aug 2021

References

  • Tanaka Y, Ohmiya A. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol. 2008;19(2):190–197.
  • Tanaka Y, Brugliera F . Flower colour and cytochromes P450. Philos Trans R Soc Lond B Biol Sci. 2013;368(1612):20120432.
  • An JP, Liu YJ, Zhang XW, et al. Dynamic regulation of different light intensity-modulated anthocyanin biosynthesis by BT2-TCP46-MYB1 in apple. J Exp Bot. 2020;71(10):3094–3109.
  • Fang H, Dong Y, Yue X, et al . The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environ. 2019;42(7):2090–2104.
  • Liu X, Zhang Q, Yang G, et al. Pivotal roles of tomato photoreceptor SlUVR8 in seedling development and UV-B stress tolerance. Biochem Biophys Res Commun. 2020;522(1):177–183.
  • Xu JZ, Wang LH. Advances in the transformation of flower color gene in ornamental plant. Rev China Agricul Sci Technol. 2006;8(5):56–60.
  • Li H, Tian J, Yao Y, et al. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiol Biochem. 2019;139:141–151.
  • Zhu YC, Zhang B, Allan AC, et al. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach. Plant J. 2020;102(5):965–976.
  • Zheng T, Li Y, Lei W, et al. SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin accumulation under high light conditions in Arabidopsis. Plant Sci. 2020;292:110355.
  • Stavenga DG, Leertouwer HL, Dudek B, et al. Coloration of flowers by flavonoids and consequences of pH dependent absorption. Front Plant Sci. 2020;11:600124.
  • Wang H, Yang Y, Li M, et al. Effects of atmospheric ozone on anthocyanin and carotenoid of plants. Plant Physiol J. 2017a;53(10):1824–1832.
  • Wang ZQ, Zhou X, Dong L, et al. iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency. J Proteomics. 2018;184:39–53.
  • Zhang Y, Xu S, Cheng Y, et al. Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce. PeerJ. 2018d;6:e4607.
  • Tanaka Y, Brugliera F. Flower color. In: Ains-worth C, ed. Flowering and its manipulation. London, UK: Black-Well; 2006:201–239.
  • Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol. 2006;57:761–780.
  • Yamagishi M, Shimoyamada Y, Nakatsuka T, et al. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily. Plant Cell Physiol. 2010;51(3):463–474.
  • Madhuri G, Reddy AR. Plant biotechnology of flavonoids. Plant Biotechnol. 1999;16(3):179–199.
  • Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54(4):733–749.
  • Yamagishi M, Yoshida Y, Nakayama M. The transcription factor LhMYB12 determines anthocyanin pigmentation in the tepals of Asiatic hybrid lilies (Lilium spp.) and regulates pigment quantity. Mol Breeding. 2012;30(2):913–925.
  • Liang CY, Rengasamy KP, Huang LM, et al. Assessment of violet-blue color formation in Phalaenopsis orchids. BMC Plant Biol. 2020;20(1):212.
  • Diretto G, Jin X, Capell T, et al. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gentian (Gentiana lutea L. var. aurantiaca). PLoS One. 2019;14(2):e212062.
  • Zhao Y, Dong W, Zhu Y, et al . PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnol J. 2020;18(5):1284–1295.
  • Butelli E, Titta L, Giorgio M, et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol. 2008;26(11):1301–1308.
  • Nishihara M, Nakatsuka T. Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches. Methods Mol Biol. 2010;589:325–347.
  • Nishihara M, Nakatsuka T. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol Lett. 2011;33(3):433–441.
  • Niyogi KK. Safety valves of photosynthesis. Curr Opin Plant Biol. 2000;3(6):455–460.
  • Goss R, Latowski D. Lipid dependence of xanthophyll cycling in higher plants and algae. Front Plant Sci. 2020;11:455.
  • Liang J, Wang L, Ding R, et al. Analysis of key enzyme genes in carotenoid metabolism pathway of Lilium and cloning of LoLcyB gene. Mol Plant Breed. 2019;10(4):4520–4529.
  • Jeknic Z, Morre JT, Jeknic S, et al. Cloning and functional characterization of a gene for capsanthin-capsorubin synthase from tiger lily (Lilium lancifolium Thunb. Splendens’). Plant & Cell Physiol. 2012;53:1899–1912.
  • Forkmann G. Flavonoids as flower Pigment the information of nature spectrum and its extension by genetic engineering. Plant Breed. 1991;106(1):1–96.
  • Hsieh LC, Lin SI, Shih AC, et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 2009;151(4):2120–2132.
  • Stommel JR, Lightbourn GJ, Winkel BS, et al. Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J Amer Soc Hort Sci. 2009;134(2):244–251.
  • Zheng J, Wu H, Zhu H, et al. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. New Phytol. 2019;223(2):705–721.
  • Liu H, Su B, Zhang H, et al. Identification and functional analysis of a flavonol synthase gene from grape hyacinth. Molecules (Basel, Switzerland). 2019;24(8):1579.
  • Abe H, Nakano M, Nakatsuka A, et al. Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theor Appl Genet. 2002;105(8):1175–1182.
  • Nakano M, Nakatsuka A, Nakayama M, et al. Mapping of quantitative trait loci for carotenoid pigmentation in flower tepals of Asiatic hybrid lily. Scie Horticul. 2005;104(1):57–64.
  • Lai YS, Shimoyamada Y, Nakayama M, et al. Pigment accumulation and transcription of LhMYB12 and anthocyanin biosynthesis genes during flower development in the asiatic hybrid lily (Lilium spp.). Plant Sci. 2012;193-194:136–147.
  • Du F, Fan J, Wang T, et al. Identification of differentially expressed genes in flower, leaf and bulb scale of lilium Oriental hybrid ‘Sorbonne’ and putative control network for scent genes. BMC Genomics. 2017;18(1):899.
  • Nakatsuka A, Izumi Y, Yamagishi M. Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the asiatic hybrid lily. Plant Sci. 2003;165(4):759–767.
  • Wang Y, Cui J, Zhang K, et al. Molecular cloning and expression analysis of anthocyanidin synthase gene fragment in lilium. Chinese Agricul Sci Bull. 2013;29:162–166.
  • Zhang M, Jiang L, Zhang D, et al. De novo transcriptome characterization of lilium ‘sorbonne’ and key enzymes related to the flavonoid biosynthesis. Mol Genet Genomics. 2015;290(1):399–412.
  • Stich K, Eidenberger T, Wurst F, et al. Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of dianthus caryophyllus L. (carnation). Planta. 1992;187(1):103–108.
  • Johzuka-Hisatomi Y, Hoshino A, Mori T, et al. Characterization of the chalcone synthase genes expressed in flowers of the common and japanese morning glories. Genes Genet Syst. 1999;74(4):141–147.
  • Li Y, Cui W, Qi X, et al. Chalcone Synthase-Encoding AeCHS is involved in normal petal coloration in actinidia eriantha. Genes-Basel. 2019;10(12):949.
  • Chen J, An L, Wang T, et al. Cloning of chalcone synthase gene in lilium and expression analysis of flower colour changes in transgenic tobacco. Acta Bot Boreal Occident Sin. 2012;32(8):1511–1517.
  • Liu Y, Lou Q, Xu W, et al. Characterization of a chalcone synthase (CHS) flower-specific promoter from lilium orential ‘Sorbonne’. Plant Cell Rep. 2011;30(12):2187–2194.
  • Zhang K, Liu Z, Guan L, et al. Changes of anthocyanin component biosynthesis in ‘summer black’ grape berries after the red flesh mutation occurred. J Agric Food Chem. 2018b;66(35):9209–9218.
  • Chao N, Wang R, Hou C, et al. Functional characterization of two chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry. Plant Physiol Biochem. 2021;161:65–73.
  • Dou X, Lang L, Bao F, et al. Cloning and expression analysis of chalcone isomerase gene LhCHI in Oriental hybrid lily (Lilium spp.). J Northeast Forestry Univer. 2015;43(9):6–17.
  • van Tunen AJ, Mur LA, Recourt K, et al. Regulation and manipulation of flavonoid gene expression in anthers of petunia: the molecular basis of the point mutation. Plant Cell. 1991;3:39–48.
  • Nishihara M, Nakatsuka T, Yamamura S. Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett. 2005;579(27):6074–6078.
  • Forkmann G, Dangelmayr B. Genetic control of chalcone isomerase activity in flowers of dianthus caryophyllus. Biochem Genet. 1980;18(5-6):519–527.
  • Miyajima I, Maehara T, Kage T, et al. Identification of the main agent causing yellow color of Yellow-Flowered cyclamen mutant. Engei Gakkai Zasshi. 1991;60(2):409–414.
  • Ohno S, Hori W, Hosokawa M, et al . Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) ‘Yuino’. Planta. 2018;247(2):413–428.
  • Li W, Ning G, Zuo C, et al. MYB_SH[AL]QKY[RF] transcription factors MdLUX and MdPCL-like promote anthocyanin accumulation through DNA hypomethylation andMdF3H activation in apple. Tree Physiol. 2021;41(5):836–848.
  • Martin C, Prescott A, Mackay S, et al. Control of anthocyanin biosynthesis in flowers of antirrhinum majus. Plant J. 1991;1(1):37–49.
  • Shen H, Zhang J, Yao Y, et al. Isolation and expression of McF3H gene in the leaves of crabapple. Acta Physiol Plant. 2012;34(4):1353–1361.
  • Zhang H, Huang Y, Yang C, et al. Molecular cloning and sequences analysis of flavanone 3-hydroxylase gene from fagopy rumtataricum. Acta Bot Boreal Occident Sin. 2010;30:447–452.
  • Zhiru X, Guoxin C, Chunlei L, et al. Cloning, sequence analysis and expression of flavanone 3-hydroxylase gene in turnip. Mol Plant Breed. 2008;6:787–792.
  • Ono E, Fukuchi-Mizutani M, Nakamura N, et al. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci U S A. 2006;103(29):11075–11080.
  • Zuker A, Tzfira T, Ben-Meir H, et al. Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed. 2002;9(1):33–41.
  • Khumkarjorn N, Thanonkeo S, Yamada M, et al. Cloning and expression analysis of a flavanone 3-hydroxylase gene in Ascocenda orchid. J Plant Biochem Biotechnol. 2017;26(2):179–190.
  • He H, Ke H, Keting H, et al . Flower colour modification of chrysanthemum by suppression of F3’H and overexpression of the exogenous Senecio cruentus F3’5’H gene. PloS One. 2013;8(11):e74395.
  • Yuan Y, Ma X, Tang D, et al. Comparison of anthocyanin components, expression of anthocyanin biosynthetic structural genes, and TfF3′H1 sequences between Tulipa fosteriana ‘albert heijn’ and its reddish sport. Scientia Horticul. 2014;175:16–26.
  • Schlangen K, Miosic S, Halbwirth H. Allelic variants from Dahlia variabilis encode flavonoid 3’-hydroxylases with functional differences in chalcone 3-hydroxylase activity. Arch Biochem Biophys. 2010;494(1):40–45.
  • Kemp M, Burden R. Phytoalexins and stress metabolites in the sapwood of trees. Phytochemistry. 1986;25(6):1261–1269.
  • Xu B, JL, Jin Z. Cloning of flavonoid-3’,5’-hydroxylase gene and its transformation into lily (Lilium longiforum). Acta Horticul Sinice. 2005;32:1051–1055.
  • Qi Y, Lou Q, Quan Y, et al. Flower-specific expression of the phalaenopsis flavonoid 3′, 5′-hydroxylase ­modifies flower color pigmentation in petunia and lilium. Plant cell. Plant Cell Tiss Organ Cult. 2013b;115(2):263–273.
  • Martens S, Teeri T, Forkmann G. Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett. 2002;531(3):453–458.
  • Johnson ET, Yi H, Shin B, et al . Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant J. 1999;19(1):81–85.
  • Shimada N, Sasaki R, Sato S, et al. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome. J Exp Bot. 2005;56(419):2573–2585.
  • Trabelsi N, D’Estaintot B, Sigaud G, et al. Kinetic and binding equilibrium studies of dihydroflavonol 4-reductase from Vitis vinifera and its unusually strong substrate inhibition. JBPC. 2011;2(3):332–344.
  • Forkmann G, Ruhnau B. Distinct substrate specificity of dihydroflavonol-4-reductase from flowers of Petunia hybrida. Zeitschrift Für Naturforschung C. 1987;42(9-10):1146–1148.
  • Suzuki K, Tasaki K, Yamagishi M. Two distinct spontaneous mutations involved in white flower development in Lilium speciosum. Mol Breed. 2015;35:193
  • Zhang X, Zhao M, Guo J. Anatomical and biochemical analyses reveal the mechanism of double-color formation in Paeonia suffruticosa ‘Shima Nishiki’. 3 Biotech. 2018;8:1–9.
  • Li H, Liu J, Pei T, et al. Overexpression of SmANS enhances anthocyanin accumulation and alters phenolic acids content in salvia miltiorrhiza and salvia miltiorrhiza bge f. alba plantlets. Int J Mol Sci. 2019;20(9):2225.
  • Qi X, Shuai Q, Fan L, et al. Molecular cloning and expressional pattern of anthocyanidin synthase gene in two mulberry species with different fruit colors. Sci Sericul. 2013;39(1):5–13.
  • Rosati C, Cadic A, Duron M, et al. Molecular characterization of the anthocyanidin synthase gene in forsythia × intermedia reveals organ-specific expression during flower development. Plant Sci. 1999;149(1):73–79.
  • An W, Liu Y, Liu H, et al. Isolation and analysis of muscari armeniacum MaANS gene and its promoter. Acta Bot Boreal Occident Sin. 2015;35(9):1728–1734.
  • Jh A, Js K, SK, et al. De novo transcriptome analysis to identify anthocyanin biosynthesis genes responsible for tissue-specific pigmentation in zoysiagrass (Zoysia japonica Steud.). PLoS One. 2015;10(4):e0124497.
  • Lim S-H, Kim JK, Lee J-Y, et al. Petal-specific activity of the promoter of an anthocyanidin synthase gene of tobacco (Nicotiana tabacum L.). plant cell. Plant Cell Tiss Organ Cult. 2013;114(3):373–383.
  • Rafique MZ, Carvalho E, Stracke R, et al. Nonsense mutation inside anthocyanidin synthase gene controls pigmentation in yellow raspberry (Rubus idaeus L.). Front Plant Sci. 2016;7:1892.
  • Vogt T, Taylor LP. Flavonol 3-O-glycosyltransferases associated with petunia pollen produce gametophyte-specific flavonol diglycosides. Plant Physiol. 1995;108(3):903–911.
  • Meng X, Li Y, Zhou T, et al. Functional differentiation of duplicated flavonoid 3-O-Glycosyltransferases in the flavonol and anthocyanin biosynthesis of freesia hybrida. Front Plant Sci. 2019;10:1330.
  • Zhao ZC, Hu GB, Hu FC, et al. The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (litchi chinesis sonn.) during fruit coloration. Mol Biol Rep. 2012;39(6):6409–6415.
  • Sui X, Gao X, Wang Q, et al. cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in freesia hybrida. Plant Cell Rep. 2011;30(7):1209–1218.
  • Sun W, Meng X, Liang L, et al. Overexpression of a freesia hybrida flavonoid 3-O-glycosyltransferase gene, Fh3GT1, enhances transcription of key anthocyanin genes and accumulation of anthocyanin and flavonol in transgenic petunia (Petunia hybrida). In Vitro Cell Dev Biol Plant. 2017;53:478–488.
  • Jiu S, Guan L, Leng X, et al. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (vitis spp.) skin coloration. Plant Biotechnol J. 2021;19(6):1216–1239.
  • Song L, Wang X, Han W, et al. PbMYB120 negatively regulates anthocyanin accumulation in pear. Int J Mol Sci. 2020;21(4):1528.
  • Qi Y, Gu C, Wang X, et al. Identification of the eutrema salsugineum EsMYB90 gene important for anthocyanin biosynthesis. BMC Plant Biol. 2020;20(1):186–186.
  • Qi Y, Zhou L, Han L, et al. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant Physiol Biochem. 2020;154:396–408.
  • Su W, Tao R, Liu W, et al . Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnol J. 2020;18(2):479–490.
  • Ma D, Constabel CP. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends Plant Sci. 2019;24(3):275–289.
  • Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 2007;50(4):660–677.
  • Gonzalez A, Zhao M, Leavitt JM, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008;53(5):814–827.
  • Lepiniec L, Debeaujon I, Routaboul JM, et al. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol. 2006;57:405–430.
  • Song S, Qi T, Huang H, et al. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in arabidopsis. Plant Cell. 2011;23(3):1000–1013.
  • Ravaglia D, Espley RV, Henry-Kirk RA, et al. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol. 2013;13:68.
  • Lai Y, Li H, Yamagishi M. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity. Front Biol. 2013;8(6):577–598.
  • Lai Y, Yamagishi M, Suzuki T. Elevated temperature inhibits anthocyanin biosynthesis in the tepals of an Oriental hybrid lily via the suppression of LhMYB12 transcription. Scientia Horticul. 2011;132:59–65.
  • Suzuki K, Suzuki T, Nakatsuka T, et al. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp). BMC Genomics. 2016;17(1):611.
  • Xu L, Yang P, Yuan S, et al. Transcriptome analysis identifies key candidate genes mediating purple ovary coloration in asiatic hybrid lilies. Int J Mol Sci. 2016;17:1881.
  • Yamagishi M. Oriental hybrid lily sorbonne homolog of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots. Mol Breeding. 2011;28(3):381–389.
  • Yamagishi M. A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale. Mol Breed. 2016;36:1–14.
  • Yamagishi M. Involvement of a LhMYB18 transcription factor in large anthocyanin spot formation on the flower tepals of the Asiatic hybrid lily (Lilium spp.) cultivar “grand cru”. Mol Breed. 2018;38:60.
  • Yamagishi M, Nakatsuka T. LhMYB12, regulating tepal anthocyanin pigmentation in asiatic hybrid lilies, is derived from Lilium dauricum and L. bulbiferum. The Hortic J. 2017;86(4):528–533.
  • Deng J, Li J, Su M, et al. A bHLH gene NnTT8 of nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiol Biochem. 2021;158:518–523.
  • Liu X, Feng C, Zhang M, et al. The MrWD40-1 gene of chinese bayberry (myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation. Plant Mol Biol Rep. 2013;31(6):1474–1484.
  • Nakatsuka A, Yamagishi M, Nakano M, et al. Light-induced expression of basic helix-loop-helix genes involved in anthocyanin biosynthesis in flowers and leaves of asiatic hybrid lily. Scientia Horticul. 2009;21:84–91.
  • Zhao F, Li G, Hu P, et al. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Sci Rep. 2018;8(1):2721.
  • Wang G, Zhang ZR, Wang YF, et al. [Bioinformatics analysis of safflower WD40 transcription factor family genes]. Zhongguo Zhong Yao Za Zhi. 2020;45(14):3432–3440.
  • Zhu Q, Li B, Mu S, et al . TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco. BMC Genomics. 2013;14:806.
  • Nesi N, Jond C, Debeaujon I, et al. The arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell. 2001;13(9):2099–2114.
  • Yao P, Zhao H, Luo X, et al. Fagopyrum tataricum FtWD40 functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco. J Plant Growth Regul. 2017;36(3):755–765.
  • Dressel A, Hemleben V. Transparent testa glabra 1 (TTG1) and TTG1-like genes in Matthiola incana R. Br. and related brassicaceae and mutation in the WD-40 motif. Plant Biol (Stuttg). 2009;11(2):204–212.
  • Zhang D, Han Z, Li J, et al. Genome-wide analysis of the SBP-box gene family transcription factors and their responses to abiotic stresses in tea (Camellia sinensis). Genomics. 2019;112(3):2194–2202.
  • Lei K, Ren J, Zhu Y, et al. SPL1 is involved in the regulation of rhizosphere acidification reaction under low phosphate condition in arabidopsis. Chinese Bull Bot. 2016;51(2):184–193.
  • Dai F, Hu Z, Chen G, et al. Progress in the plant specific SBP-box gene family. Chinese Bull Life Sci. 2010;22(2):155–160.
  • Lei K, Liu H. Research advances in plant regulatory hub miR156 and targeted SPL family. Chem Life. 2016;36(1):13–20.
  • Feyissa BA, Arshad M, Gruber MY, et al. The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa. BMC Plant Biol. 2019;19(1):434.
  • Li Y, Cui W, Qi X, et al. MicroRNA858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit (actinidia arguta). Plant Sci. 2020;296:110476.
  • Jia X, Shen J, Liu H, et al. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta. 2015;242(1):283–293.
  • Tirumalai V, Swetha C, Nair A, et al. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. J Exp Bot. 2019;70(18):4775–4792.
  • Gou JY, Felippes FF, Liu CJ, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell. 2011;23(4):1512–1522.
  • Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463–467.
  • Yan J, Gu Y, Jia X, et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell. 2012;24(2):415–427.
  • Wang L, ZengJ HQ, Song J, et al. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. Plant Sci. 2015b;238:273–285.
  • Li X, Hou Y, Xie X, et al . A blueberry MIR156a-SPL12 module coordinates the accumulation of chlorophylls and anthocyanins during fruit ripening. J Exp Bot. 2020;71(19):5976–5989.
  • Wang Y, Liu W, Wang X, et al. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. Hortic Res. 2020;7(1):118.
  • Gandikota M, Birkenbihl RP, Hohmann S, et al. The miRNA156/157 recognition element in the 3’ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007;49(4):683–693.
  • Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet. 1996;250(1):7–16.
  • Luo Y, Guo Z, Li L. Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol. 2013;380(2):133–144.
  • Franco-Zorrilla JM, Valli A, Todesco M, et al . Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39(8):1033–1037.
  • Cui LG, Shan JX, Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 2014;80(6):1108–1117.
  • Zhao D, Wei M, Shi M, et al. Identification and comparative profiling of miRNAs in herbaceous peony (Paeonia lactiflora Pall.) with red/yellow bicoloured flowers. Sci Rep. 2017;7:44926.
  • Zhang G, Chen D, Zhang T, et al. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Res. 2018a;25(5):465–476.
  • Cui J, Gao Z, Li B, et al. Identification of anthocyanin biosynthesis related microRNAs and total microRNAs in Lonicera edulis by high-throughput sequencing. J Genet. 2020;99:31.
  • Yuan L, Wei C, Jia G. Study on transformation of Lilium orential Sorbonne with an anthocyanin regulatory gene Rosea1. Guangdong Agricul Sci. 2012;39(10):10–12.
  • Zhang D, Li Z, Li J-F. Targeted gene manipulation in plants using the CRISPR/Cas technology. J Genet Genomics. 2016;43(5):251–262.
  • Cheng Y, Jiao Y, Qiao N, et al. Targeting modification PSY1 gene in tomato using CRISPR/Cas9 system. China Vegetables. 2018;11:32–38.
  • Watanabe K, Kobayashi A, Endo M, et al. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the japanese morning glory ipomoea (pharbitis) nil. Sci Rep. 2017;7(1):10028.