1,056
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterization, optimization of preparation process of an Inonotus obliquus polysaccharide-Zinc (II) complex and its antioxidant activities

, , , , , & show all
Pages 1274-1283 | Received 05 Apr 2021, Accepted 12 Aug 2021, Published online: 23 Aug 2021

References

  • Beyersmann D, Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14(3–4):331–341.
  • Wang PP, Huang Q, Chen C, et al. The chemical structure and biological activities of a novel polysaccharide obtained from fructus mori and its zinc derivative. J Funct Foods. 2019;54:64–73.
  • Caulfield LE, De Onis M, Blössner M, et al. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. Am J Clin Nutr. 2004;80(1):193–198.
  • Caulfield LE, Richard SA, Black RE. Undernutrition as an underlying cause of malaria morbidity and mortality in children less than five years old. Am J Trop Med Hyg. 2004;71(2 Suppl):55–63.
  • Boroujeni ST, Naghdi N, Shahbazi M, et al. The effect of severe zinc deficiency and zinc supplement on spatial learning and memory. Biol Trace Elem Res. 2009;130(1):48–61.
  • Harmaza YM, Slobozhanina EI. Zinc essentiality and toxicity. Biophysical aspects. Biophysics. 2014;59(2):264–275.
  • Buff CE, Bollinger DW, Ellersieck MR, et al. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J Anim Sci. 2005;83(10):2380–2386.
  • Wang LL, Song S, Zhang B, et al. A sulfated polysaccharide from abalone influences iron uptake by the contrary impacts of its chelating and reducing activities. Int J Biol Macromol. 2019;138:49–56.
  • Zhao SW, Li B, Chen GT, et al. Preparation, characterization, and anti-inflammatory effect of the chelate of flammulina velutipes polysaccharide with Zn. Food Agr Immunol. 2017;28(1):162–177.
  • Wang H, Betti M. Sulfated glycosaminoglycan-derived oligosaccharides produced from chicken connective tissue promote iron uptake in a human intestinal Caco-2 cell line. Food Chem. 2017;220:460–469.
  • Lian KX, Zhu XQ, Chen J, et al. Selenylation modification: enhancement of the antioxidant activity of a glycyrrhiza uralensis polysaccharide. Glycoconj J. 2018;35(2):243–253.
  • Li XP, Hou RR, Yue CJ, et al. The selenylation modification of epimedium polysaccharide and isatis root polysaccharide and the immune-enhancing activity comparison of their modifiers. Biol Trace Elem Res. 2016;171(1):224–234.
  • Zheng WF, Miao K, Liu Y, et al. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl Microbiol Biotechnol. 2010;87(4):1237–1254.
  • Song Y, Hui J, Kou W, et al. Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides. Curr Microbiol. 2008;57(5):454–462.
  • Jiang SP, Shi FL, Lin H, et al. Inonotus obliquus polysaccharides induces apoptosis of lung cancer cells and alters energy metabolism via the LKB1/AMPK axis. Int J Biol Macromol. 2020;151:1277–1286.
  • Wang J, Hu WJ, Li LZ, et al. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One. 2017;12(6):e0180476–19.
  • Zhang CJ, Guo JY, Cheng H, et al. Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus. Int J Biol Macromol. 2020;151:855–860.
  • Han YQ, Nan SJ, Fan F, et al. Inonotus obliquus polysaccharides protect against alzheimer’s disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects. Int J Biol Macromol. 2019;131:769–778.
  • Ma LS, Chen HX, Zhang Y, et al. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. Carbohydr Polym. 2012;89(2):371–378.
  • Wang J, Chen HX, Wang YW, et al. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III) complex. Int J Biol Macromol. 2015;75:210–217.
  • Chen YY, Huang YR, Cui ZM, et al. Purification, characterization and biological activity of a novel polysaccharide from Inonotus obliquus. Int J Biol Macromol. 2015;79:587–594.
  • Yang T, Zhang SP, Wang RF, et al. Polysaccharides from hizoma panacis majoris and its antioxidant activity. Int J Biol Macromol. 2016;86:56–763.
  • Wang L, Li XY. Preparation, physicochemical property and in vitro antioxidant activity of zinc-Hohenbuehelia serotina polysaccharides complex. Int J Biol Macromol. 2019;121:862–869.
  • Wang ZJ, Xie JH, Shen MY, et al. Carboxymethylation of polysaccharide from cyclocarya paliurus and their characterization and antioxidant properties evaluation. Carbohydr Polym. 2016;136:988–994.
  • Tohma H, Gülçin İ, Bursal E, et al. Antioxidant activity and phenolic compounds of ginger (zingiber officinale rosc.) determined by HPLC-MS/MS. Food Measure. 2017;11(2):556–566.
  • Lagercrantz C. Formation of the paramagnetic complex [Cr(OH)5O2]5- in the reaction between chromium(VI) oxide, and hydrogen peroxide or superoxide anion radicals studied by EPR spectroscopy. Free Radic Biol Med. 1999;26(9–10):1134–1137.
  • Xu L, Tsona NT, Tang SS, et al. Role of (H2O) n (n = 1–2) in the gas-phase reaction of ethanol with hydroxyl radical: mechanism, kinetics, and products. ACS Omega. 2019; 4(3):5805–5817.
  • Hung TM, Na MK, Thuong PT, et al. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of dipsacus asper wall. J Ethnopharmacol. 2006;108(2):188–192.