1,097
Views
0
CrossRef citations to date
0
Altmetric
Articles

Disinfectants and pH synergistically inactivate Pseudomonas fluorescens ATCC 13525: insights into cellular redox homeostasis and ultrastructure

Pages 1361-1373 | Received 13 Apr 2021, Accepted 12 Aug 2021, Published online: 27 Sep 2021

References

  • Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol. 2000;3(1):3–8.
  • Sies H. Damage to plasmid DNA by singlet oxygen and its protection. Mutat Res. 1993;299(3–4):183–191.
  • Sies H, Menck CF. Singlet oxygen induced DNA damage. Mutat Res. 1992;275(3–6):367–375.
  • Dizdaroglu M. Measurement of radiation-induced damage to DNA at the molecular level. Int J Radiat Biol. 1992;61(2):175–183.
  • González-Flecha B, Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem. 1995;270(23):13681–13687.
  • Humphries KM, Szweda LI. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry. 1998;37(45):15835–15841.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128.
  • Fucci L, Oliver CN, Coon MJ, et al. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A. 1983;80(6):1521–1525.
  • Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med. 1990;9(4):315–325.
  • Niederhoffer EC, Naranjo CM, Bradley KL, et al. Control of Escherichia coli superoxide dismutase (Soda and Sodb) genes by the ferric uptake regulation (Fur) locus. J Bacteriol. 1990;172(4):1930–1938.
  • Compan I, Touati D. Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol. 1993;175(6):1687–1696.
  • Benov LT, Fridovich I. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J Biol Chem. 1994;269(41):25310–25314.
  • Finn GJ, Condon S. Regulation of catalase synthesis in Salmonella typhimurium. J Bacteriol. 1975;123(2):570–579.
  • von Ossowski I, Mulvey MR, Leco PA, et al. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol. 1991;173(2):514–520.
  • Kim G, Weiss SJ, Levine RL. Methionine oxidation and reduction in proteins. Biochim Biophys Acta. 2014;1840(2):901–905.
  • Levine RL, Mosoni L, Berlett BS, et al. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996;93(26):15036–15040.
  • Wirth SM, Lowry GV, Tilton RD. Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol. 2012;46(22):12687–12696.
  • Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (Mic) of antimicrobial substances. Nat Protoc. 2008;3(2):163–175.
  • European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) . Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect. 2000;6(9):509–515.
  • Jakubowski W, Walkowiak B. Resistance of oxidative stress in biofilm and planktonic cells. Braz Arch Biol Technol. 2015;58(2):300–308.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol. 1990;186:464–478.
  • Levine RL, Williams JA, Stadtman ER, et al. Carbonyl assays for determination of oxidatively modified proteins. Meth Enzymol. 1994;233:346–357.
  • Dalle-Donne I, Rossi R, Giustarini D, et al. Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med. 2001;31(9):1075–1083.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77.
  • Aebi H. Catalase in vitro. Meth Enzymol. 1984;105:121–126.
  • Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133–140.
  • Jakubowski W, Biliński T, Bartosz G. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med. 2000;28(5):659–664.
  • Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–287.
  • Cutaia M, Kroczynski J, Tollefson K. pH-dependent oxidant production following inhibition of the mitochondrial electron transport chain in pulmonary endothelial cells. Endothelium. 2002;9(2):109–121.
  • Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?Arch Biochem Biophys. 2008;476(2):107–112.
  • Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313–7352.
  • Sakihama Y, Cohen MF, Grace SC, et al. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 2002;177(1):67–80.
  • Maeta K, Nomura W, Takatsume Y, et al. Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeasts. Appl Environ Microbiol. 2007;73(2):572–580.
  • Majima HJ, Oberley TD, Furukawa K, et al. Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem. 1998;273(14):8217–8224.
  • Curran HR, Evans FR, Leviton A. The sporicidal action of hydrogen peroxide and the use of crystalline catalase to dissipate residual peroxide. J Bacteriol. 1940;40(3):423–434.
  • Hamiltong A. Chemical models and mechanisms for oxygenases. In: Hayaishi O, editor. Molecular mechanisms of oxygen activation. New York: Academic Press; 1974. p. 405–451.
  • Sawyer DT. Oxygen: inorganic chemistry. In: King E, editor. Encyclopedia of inorganic chemistry. Vol. 6. Chichester: Wiley & Sons; 1994. p. 2951.
  • Xu B, Li Q, Wang Y. Effects of pH values of hydrogen peroxide bleaching agents on enamel surface properties. Oper Dent. 2011;36(5):554–562.
  • Young N, Fairley P, Mohan V, et al. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening. J Dent. 2012;40(Suppl 2):e11–e16.
  • Brooks RE, Moore SB. Alkaline hydrogen peroxide bleaching of cellulose. Cellulose. 2000;7(3):263–286.
  • Gould JM. Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol Bioeng. 1985;27(3):225–231.
  • Torres CRG, Crastechini E, Feitosa FA, et al. Influence of pH on the effectiveness of hydrogen peroxide whitening. Oper Dent. 2014;39(6):E261–E268.
  • Raffellini S, Guerrero S, Alzamora SM. Effect of hydrogen peroxide concentration and pH on inactivation kinetics of Escherichia coli: E. Coli inactivation by hydrogen peroxide at different ph values. J Food Saf. 2008;28(4):514–533.
  • Cavalli V, Arrais C. A G, Giannini M, et al. High-concentrated carbamide peroxide bleaching agents effects on enamel surface. J Oral Rehabil. 2004;31(2):155–159.
  • Jiang T, Ma X, Wang Y, et al. Investigation of the effects of 30% hydrogen peroxide on human tooth enamel by Raman scattering and laser-induced fluorescence. J Biomed Opt. 2008;13(1):014019.
  • Bistey T, Nagy IP, Simó A, et al. In vitro FT-IR study of the effects of hydrogen peroxide on superficial tooth enamel. J Dent. 2007;35(4):325–330.
  • Attin T, Müller T, Patyk A, et al. Influence of different bleaching systems on fracture toughness and hardness of enamel. Oper Dent. 2004;29(2):188–195.
  • Rodrigues JA, Marchi GM, Ambrosano GMB, et al. Microhardness evaluation of in situ vital bleaching on human dental enamel using a novel study design. Dent Mater. 2005;21(11):1059–1067.
  • Jackett PS, Aber VR, Lowrie DB. Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol. 1978;104(1):37–45.
  • Envirotech. The use of peracetic acid at increased pH levels. Patent Application (US2012/024461 A1). 2012.
  • Xu C, Long X, Du J, et al. A critical reinvestigation of the TAED-activated peroxide system for low-temperature bleaching of cotton. Carbohydr Polym. 2013;92(1):249–253.
  • Kitis M. Disinfection of wastewater with peracetic acid: a review. Environ Int. 2004;30(1):47–55.
  • Colgan S, Gehr R. Disinfection. Water Environ Technol. 2001;13:29–33.
  • Gehr R, Cochrane D, French M. 2002. Peracetic acid as a disinfectant for municipal wastewaters: encouraging performance results from physicochemical as well as biological effluents. Proceedings of the US Water Environment Federation Disinfection Conference, Chicago, Illinois.
  • Baldry MGC, French MS. Activity of peracetic acid against sewage indicator organisms. Water Sci Technol. 1989a;21(12):1747–1749.
  • Sanchez-Ruiz C, Martinez-Royano ST-MI. An evaluation of the efficiency and impact of raw wastewater disinfection with peracetic acid prior to ocean discharge. Water Sci Technol. 1995;32:159–166.
  • Tutumi M, Imamura K, Hatano S, et al. Antimicrobial action of peracetic acid. J Food Hyg Soc Jpn. 1974;15(2):116–120.
  • Baldry MGC, French MS, Slater D. The activity of peracetic acid on sewage indicator bacteria and viruses. Water Sci Technol. 1991;24(2):353–357.
  • Block SS. Peroxygen compounds. In: Block SS, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia (PA): Lea & Febiger; 1991. p. 167–181.
  • Lenntech. Disinfectants peracetic acid; [accessed 2020 Apr 19]. Available from: https://www.lenntech.com/processes/disinfection/chemical/disinfectants-peracetic-acid.htm
  • Seiner N, Corp D, Nj A. Evaluation of peracetic acid as an environmentally safe alternative for hypochlorite. Textile Chem Color. 1995;27:29–32.
  • Shen X, Sheng L, Gao H, et al. Enhanced efficacy of peroxyacetic acid against Listeria monocytogenes on fresh apples at elevated temperature. Front Microbiol. 2019;10, 119. doi: 10.3389/fmicb.2019.01196.
  • Kuiken KA, Lyman CM, Hale F, et al. Factors which influence the stability of tryptophan during the hydrolysis of proteins in alkaline solution. J Biol Chem. 1947;171(2):551–560.
  • Xu Y-B, Xu J-X, Chen J-L, et al. Antioxidative responses of Pseudomonas fluorescens YZ2 to simultaneous exposure of Zn and Cefradine. Ecotoxicology. 2015;24(7–8):1788–1797.
  • Ganie SA, Haq E, Hamid A, et al. Long dose exposure of hydrogen peroxide (H2O2) in albino rats and effect of Podophyllum hexandrum on oxidative stress. Eur Rev Med Pharmacol Sci. 2011;15(8):906–915.
  • Finnegan M, Linley E, Denyer SP, et al. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J Antimicrob Chemother. 2010;65(10):2108–2115.
  • Small DA, Chang W, Toghrol F, et al. Comparative global transcription analysis of sodium hypochlorite, peracetic acid, and hydrogen peroxide on Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2007;76(5):1093–1105.
  • Semchyshyn H, Bagnyukova T, Storey K, et al. Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol Int. 2005;29(11):898–902.
  • Juven BJ, Pierson MD. Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. J Food Prot. 1996;59(11):1233–1241.
  • Liochev SI. The mechanism of ‘Fenton-like’ reactions and their importance for biological systems. A biologist’s view. Met Ions Biol Syst. 1999;36:1–39.
  • Baldry MGC. The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. J Appl Bacteriol. 1983;54(3):417–423.
  • Marjani A. 2010. The effects of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in wistar rats. OMJ [Internet] [cited 2020 Apr 15]; Available from: http://www.omjournal.org/fultext_PDF.aspx?DetailsID=14&type=fultext
  • Baldry MGC, Fraser JAL. Disinfection with peroxygens. Crit Rep Appl Chem. 1988;22:91–116.
  • Fukuzaki S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 2006;11(4):147–157.
  • Kerkaert B, Mestdagh F, Cucu T, et al. Hypochlorous and peracetic acid induced oxidation of dairy proteins. J Agric Food Chem. 2011;59(3):907–914.
  • Fraser JA, Godfree AF, Jones F. Use of peracetic acid in operational sewage sludge disposal to pasture. Water Sci Technol. 1985;17(4–5):451–466.
  • Lazarova V, Janex ML, Fiksdal L, et al. Advanced wastewater disinfection technologies: short and long term efficiency. Water Sci Technol. 1998;38(12):109–117.
  • Antonelli M, Rossi S, Mezzanotte V, et al. Secondary effluent disinfection: PAA long term efficiency. Environ Sci Technol. 2006;40(15):4771–4775.
  • Jifa W, Zhiming Y, Xiuxian S, et al. Comparative researches on effects of sodium dodecylbenzene sulfonate and sodium dodecyl sulfate upon Lateolabrax japonicus biomarker system. Environ Toxicol Pharmacol. 2005;20(3):465–470.
  • Messina CM, Faggio C, Laudicella VA, et al. Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus galloprovincialis): regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress. Aquat Toxicol. 2014;157:94–100.
  • Abel PD. Toxicity of synthetic detergents to fish and aquatic invertebrates. J Fish Biol. 1974;6(3):279–298.
  • Gloxhuber C, Künstler K, editors. Anionic surfactants: biochemistry, toxicology, dermatology. 2nd ed., rev. expanded. New York: M. Dekker; 1992.
  • Geuther R. The plasma membrane: dynamic perspectives, genetics and pathology (Heidelberger Science Library vol. 18). Xi, 186 s., 27 abb., 24 tab. London-new york-heidelberg-berlin 1972: the English University Press Ltd. Und Springer Verlag. Dm 18,30. Z Allg Mikrobiol. 1974;14(2):175–175.
  • Baker Z, Harrison RW, Miller BF. Action of synthetic detergents on the metabolism of bacteria. J Exp Med. 1941;73(2):249–271.
  • Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148–157.
  • Winther JR, Thorpe C. Quantification of thiols and ­disulfides. Biochim Biophys Acta. 2014;1840(2):838–846.
  • Nagy P. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal. 2013;18(13):1623–1641.
  • Halprin KM, Ohkawara A. The measurement of glutathione in human epidermis using glutathione reductase. J Invest Dermatol. 1967;48(2):149–152.
  • Stark AA, Arad A, Siskindovich S, et al. Effect of pH on mutagenesis by thiols in Salmonella typhimurium TA102. Mutat Res. 1989;224(1):89–94.
  • Halliwell B. 1982. The toxic effects of oxygen on plant tissues. In: Oberley LW ,editor. Superoxide dismutase. Vol. 1. Boca Raton (FL): CRC Press. pp. 89–123.
  • Klomsiri C, Karplus PA, Poole LB. Cysteine-based redox switches in enzymes. Antioxid Redox Signal. 2011;14(6):1065–1077.
  • Block SS. 2001. Peroxygen compounds. In: Block SS, editor. Disinfection, sterilization, and preservation. Philadelphia (PA): Lippincott Williams & Wilkins. p. 185–204.
  • Kono Y, Fridovich I. Superoxide radical inhibits catalase. J Biol Chem. 1982;257(10):5751–5754.
  • de Oliveira MR. Vitamin A and retinoids as mitochondrial toxicants. Oxid Med Cell Longev. 2015;2015:140267–140213.
  • Brooklyn College. The effect of pH on enzyme actvity; [accessed 21 Oct 2019]. Available from: http://academic.brooklyn.cuny.edu/biology/bio4fv/page/ph_and_.htm
  • Clapp PA, Davies MJ, French MS, et al. The bactericidal action of peroxides; an E.P.R. spin-trapping study. Free Radic Res. 1994;21(3):147–167.
  • Koivunen J, Heinonen-Tanski H. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Res. 2005;39(8):1519–1526.