1,268
Views
2
CrossRef citations to date
0
Altmetric
Articles

Molecular characterisation of the oldest domesticated Turkish einkorn wheat landraces with simple sequence repeat (SSR) markers

, , , ORCID Icon &
Pages 1291-1300 | Received 07 Jun 2021, Accepted 16 Aug 2021, Published online: 31 Aug 2021

References

  • Harlan JR. 1995. The living fields: our agricultural heritage. Cambridge: Cambridge University Press.
  • Dvorák J, Terlizzi P, Zhang HB, et al. The evolution of polyploid wheats: identification of the a genome donor species. Genome. 1993;36(1):21–31.
  • Heun M, Schäfer-Pregl R, Klawan D, et al. Site of einkorn wheat domestication identified by DNA fingerprinting. Science. 1997;278(5341):1312–1314.
  • Abbo S, Lev-Yadun S, Gopher A. Origin of near Eastern plant domestication: Homage to claude Levi-Strauss and “La pensée sauvage”. Genet Resour Crop Evol. 2011;58(2):175–179.
  • Haldorsen S, Akan H, Çlik B, et al. The climate of the younger dryas as a boundary for einkorn domestication. Veget Hist Archaeobot. 2011;20:305–318. DOI
  • Zaharieva M, Monneveux P. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genet Resour Crop Evol. 2014;61(3):677–706.
  • Løje H, Møller B, Laustsen AM, et al. Chemical composition, functional properties and sensory profiling of einkorn (Triticum monococcum L.). J Cereal Sci. 2003;37(2):231–240.
  • Aaronsohn A. Agricultural and botanical exploration in palestine. Bull. Bur. Pl. Industr. U. S. D. A. 1910;180:1–64.
  • Ozkan B, Ceylan RF, Kizilay H. Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production. Renew. Energy. 2011;36(5):1639–1644.
  • Nevo E, Beiles A. Genetic diversity of wild emmer wheat in Israel and Turkey. Theoret Appl Genetics. 1989;77(3):421–455.
  • Nevo E, Beiles A, Kaplan D. Genetic diversity and environmental associations of wild emmer wheat in Turkey. Heredity. 1988;61(1):31–45.
  • 12. Padulosi S., Hammer K., Heller J., editors. 1996. Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, 262. p.
  • Zhukovsky PM. 1964. Kulturnye rasteniya i ikh sorodichi. [Cultivated plants and their relatives]. Lausanne Switzerland: Kolos, Leningrad, 791 p (in Russian).
  • Hidalgo A, Brandolini A . Nutritional properties of einkorn wheat (Triticum monococcum L.). J Sci Food Agric. 2014;94(4):601–612.
  • Feuillet C, Travella S, Stein N, et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A. 2003;100(25):15253–15258.
  • Lebedeva TV, Peusha HO. Genetic control of the wheat Triticum monococcum L. resistance to powdery mildew. Russ J Genet. 2006;42(1):60–66.
  • Shi AN, Leath S, Murphy JP. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology. 1998;88(2):144–147.
  • Sodkiewicz W, Strzembicka A. Application of Triticum monococcum for the improvement of triticale resistance to leaf rust (Puccinia triticina). Plant Breed . 2004;123(1):39–42.
  • Stein N, Feuillet C, Wicker T, et al . Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci U S A. 2000;97(24):13436–13441.
  • Vasu K, Singh H, Singh S, et al. Microsatellite marker linked to a leaf rust resistance gene from Triticum monococcum L. transferred to bread wheat. J Plant Biochem Biotechnol. 2001;10(2):127–132.
  • Sodkiewicz W. Diploid wheat: Triticum monococcum as a source of resistance genes to preharvest sprouting of triticale. Cereal Res Commun. 2002;30(3–4):323–328.
  • Cakmak I, Cakmak O, Eker S, et al. Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats. Plant and Soil. 1999;215(2):203–209.
  • Rogers WJ, Miller TE, Payne PI, et al. Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T-Boeoticum Boiss ssp Thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica. 1997;93(1):19–29.
  • Tranquilli G, Cuniberti M, Gianibelli MC, et al. Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality. J Cereal Sci. 2002;36(1):9–18.
  • Fregeau-Reid J, Abdel-Aal E-SM. 2004. Einkorn: a potential functional wheat and genetic resource. In: Abdel-Aal E, Wood P, editors. Specialty grains for food and feed. St Paul (MN): American Association of Cereal Chemists, 37–61.
  • Jing HC, Kornyukhin D, Kanyuka K, et al . Identification of variation in adaptively important traits and genome-wide analysis of trait-marker associations in Triticum monococcum. J Exp Bot. 2007;58(13):3749–3764.
  • Brandolini A, Volante A, Heun M. Geographic differentiation of domesticated einkorn wheat and possible neolithic migration routes. Heredity (Edinb). 2016;117(3):135–141.
  • Kilian B, Özkan H, Pozzi C, et al. 2009. Domestication of the triticeae in the fertile crescent. In: C. Feuillet, G.J. Muehlbauer, editors. Genetics and genomics of the triticeae, plant genetics and genomics: Crops and models. 7, Springer SciencetBusiness Media, LLC, pp 81–119.
  • Ceccarelli S, Grando S, van Leur JAG. Barley landraces of the fertile crescent offer new breeding options for stress environments. Diversity. 1995;11:112–113.
  • Islam MR, Gregorio GB, Salam MA, et al. Validation of SalTol linked markers and haplotype diversity on chromosome 1 of rice. Mol. Plant Breed. 2012;3(10):103–114.
  • Wang SC, Wong DB, Forrest K, et al . Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12(6):787–796.
  • Kilian B, Özkan H, Walther A, et al. Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: Implications for the origin of agriculture. Mol Biol Evol. 2007;24(12):2657–2266.
  • Tanno K, Willcox G. How fast was wild wheat domesticated?Science. 2006;311(5769):1886.
  • Zohary D, Hopf M. 1993. Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley, 2nd ed. Oxford: Oxford University Press.
  • Barut M, Nadeem MA, Karaköy T, et al. DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turk J Agric For. 2020;44(5):479–491.
  • Nadeem MA, Gündoğdu M, Ercişli S, et al. Uncovering phenotypic diversity and DArTseq marker loci associated with antioxidant activity in common bean. Genes. 2019;11(1):36.
  • Aliyev T, Abbasov MA, Mammadov AC. Genetic identification of diploid and tetraploid wheat species with RAPD markers Ramiz. Turk J Biol. 2007;31:173–180.
  • Figliuolo G, Perrino P. Genetic diversity and intraspecific phylogeny of Triticum turgidum L. subsp. dicoccon (schrank) Thell. revealed by RFLPs and SSRs. Genet Resour Crop Evol. 2004;51(5):519–527.
  • Hajyzadeh M, Cavusoglu A, Sulusoglu M, et al. DNA SSR fingerprinting analysis among cherry laurel (Prunus laurocerasus L.) types. J Food Agric Environ. 2013;11(2):630–638.
  • Henkrar F, El-Haddoury J, Ouabbou H, et al. Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers. Sci Agric (Piracicaba, Braz). 2016;73(2):134–141.
  • Huang S, Sirikhachornkit A, Su X, et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the triticum/aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A. 2002;99(12):8133–8138.
  • Röder MS, Korzun V, Wendehake K, et al. A microsatellite map of wheat. Genetics. 1998;149(4):2007–2023.
  • Abbasov M, Akparov Z, Gross T, et al. Genetic relationship of diploid wheat (Triticum spp.) species assessed by SSR markers. Genet Resour Crop Evol. 2018;65(5):1441–1453..
  • Arystanbekkyzy M, Nadeem MA, Aktas H, et al. Phylogenetic and taxonomic relationship of turkish wild and cultivated emmer (Triticum turgidum ssp. dicoccoides) revealed by iPBS-retrotransposons markers. Intl. J. Agric. Biol. 2019;21:(1):155–163.
  • Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28(19):2537–2539. P.
  • Roldán-Ruiz I, Dendauw J, Van Bockstaele E, et al. AFLP markers reveal high polymorphic rates in rye grasses (Lolium spp.) Mol Breed. 2000;6:125–134.
  • Rohlf FJ. 1988. NTSYS-PC: Numerical taxonomy and multivariate analysis system, version 1.40. Setauket (NY): Exeter Publishing, 298. p.
  • Jaccard P. Nouvelles recherches sur la distribution florale. Bul. Soc. Vaud. Sci. Nat. 1908;44:223–270.
  • Sneath PHA, Sokal RR. Numerical taxonomy. W. H. Freeman and Company, San Francisco. 1973;230–234.
  • Kimura M, Crow JF. The number of alleles that can be maintened in a finite population. Genetics. 1964;49:725–738.
  • Pritchard JK, Stephens M, Donnelly PJ. Inference of population structure using multilocus genotypedata. Genetics. 2000;155(2):945–959.
  • Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol Ecol. 2005;14:2611–2620.
  • Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973;70(12):3321–3323.
  • Lewontin RC. Testing the theory of natural selection. Nature. 1972;236:181–182
  • Gurcan K, Demirel F, Tekin M, et al. Molecular and agro-morphological characterization of ancient wheat landraces of Turkey. BMC Plant Biol. 2017;17(Suppl. 1):171.
  • Galili G, Galili S, Lewinsohn E, et al. Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds. CRC Crit Rev Plant Sci. 2002;21(3):167–204.
  • Newton AC, Akar T, Baresel JP, et al. Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev. 2010;30(2):237–269.
  • Ahmed HGMD, Kashif M, Rashid MAR, et al. Genome wide diversity in bread wheat evaluated by SSR markers. Intl J Agric Biol. 2020;24:263–272.
  • Feng S, He R, Lu J, et al. Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars. Front Genet. 2016;7:113
  • Gupta PK, Rustgi S, Sharma S, et al. Transferable Est-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics. 2003;270(4):315–323.
  • Ren X, Jiang H, Yan Z, et al. Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS ONE. 2014;9(2):e88091
  • Shiferaw E, Pe ME, Porceddu E, et al. Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. Mol Breed. 2012;30(2):789–797.
  • Ramadugu C, Keremane ML, Hu X, et al. Genetic analysis of citron (Citrus medica L.) using simple sequence repeats and single nucleotide polymorphisms. Sci Hortic. 2015;195:124–137.
  • Sönmezoğlu ÖA, Terzi B. Characterization of some bread wheat genotypes using molecular markers for drought tolerance. Physiol Mol Biol Plants. 2018;24(1):159–166.
  • Raza A, Mehmood SS, Shah T, et al. 2019. Applications of molecular markers to develop resistance against abiotic stresses in wheat. In: Hasanuzzaman M, Nahar K, Hossain M, editors. Wheat production in changing environments. Singapore: Springer, 393–420.
  • Korzun V, Röder M, Ganal M, et al. Genetic diversity and evolution of the diploid wheats T. urartu, T. boeoticum and T. monococcum revealed by microsatellite markers. Schriften zu Genetischen Ressourcen. 1998;8:244–247.