963
Views
0
CrossRef citations to date
0
Altmetric
Articles

Transcriptional profiling of alkaline stress-induced defense responses in soybean (Glycine max)

, , , , , , & show all
Pages 1353-1360 | Received 02 Jun 2021, Accepted 30 Aug 2021, Published online: 12 Sep 2021

References

  • Osman KT. 2014. Soil resources and soil degradation. In: Soil degradation, conservation and remediation. Dordrecht: Springer. p. 1–43.
  • Yang CW, Jianaer A, Li CY, et al. Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynt. 2008;46(2):273–278.
  • Chaney RL, Coulombe BA, Bell PF, et al. Detailed method to screen dicot cultivars for resistance to fe-chlorosis using fedtpa and bicarbonate in nutrient solutions. J Plant Nutr. 1992;15(10):2063–2083.
  • Yang CW, Chong JN, Li CY, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil. 2007;294(1-2):263–276.
  • Tuyen DD, Zhang HM, Xu DH. Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Mol Breeding. 2013;31(1):79–86.
  • Karuppanapandian T, Moon JC, Kim C, et al. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci. 2011;5:709–725.
  • Toh S, Kamiya Y, Kawakami N, et al. Thermoinhibition uncovers a role for strigolactones in arabidopsis seed germination. Plant Cell Physiol. 2012;53(1):107–117.
  • Yu M, Liu ZX, Jiang SS, et al. QTL mapping and candidate gene mining for soybean seed weight per plant. Biotechnol Biotechnological Equip. 2018;32(4):908–914.
  • Su DQ, Jiang ST, Wang JJ, et al. Identification of major QTLs associated with agronomical traits and candidate gene mining in soybean. Biotechnol Biotechnological Equip. 2019;33(1):1481–1493.
  • Day-Williams AG, Zeggini E. The effect of next-generation sequencing technology on complex trait research. Eur J Clin Invest. 2011;41(5):561–567.
  • An YM, Song LL, Liu YR, Shu YJ, et al. De novo transcriptional analysis of alfalfa in response to saline-alkaline stress. Front Plant Sci. 2016;7:931.
  • Geng G, Li RR, Stevanato P, et al. Physiological and transcriptome analysis of sugar beet reveals different mechanisms of response to neutral salt and alkaline salt stresses. Front Plant Sci. 2020;11:571864.
  • Qiao YH, Lu WX, Wang R, et al. Identification and expression analysis of strigolactone biosynthetic and signaling genes in response to salt and alkaline stresses in soybean (Glycine max). DNA Cell Biol. 2020;39(10):1850–1861.
  • Luo D, Zhou Q, Wu YG, et al. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol. 2019;19(1):32.
  • DuanMu HZ, Wang Y, Bai X, et al. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Funct Integr Genomics. 2015;15(6):651–660.
  • Yang HH, Zhang YF, Zhen X, et al. Transcriptome sequencing and expression profiling of genes involved in daylily (Hemerocallis citrinaBorani) flower development. Biotechnol Biotechnological Equip. 2020;34(1):542–548.
  • Singh K, Foley RC, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 2002;5(5):430–436.
  • Baillo EH, Kimotho RN, Zhang ZB, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes. 2019;10:771.
  • Khan MS. The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnol Biotechnological Equip. 2011;25(3):2433–2442.
  • Guo R, Yang ZZ, Li F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol. 2015;15:170.
  • Veiga EV, Vannucchi H, Marchini JS, et al. The nutritive-value of a rice and soybean diet adults. Nutr Res. 1985;5(6):577–583.
  • Li N, Liu HL, Sun J, et al. Transcriptome analysis of two contrasting rice cultivars during alkaline stress. Sci Rep. 2018;8(1):9586.
  • Sun SX, Song HY, Li J, et al. Comparative transcriptome analysis reveals gene expression differences between two peach cultivars under saline-alkaline stress. Hereditas. 2020;157(1):9.
  • Zhang KH, Tang JR, Wang Y, et al. The tolerance to saline-alkaline stress was dependent on the roots in wheat. Physiol Mol Biol Plants. 2020;26(5):947–954.
  • Guo MX, Li SP, Tian S, et al. Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba). Plos One. 2017;12(10):e0185732.
  • Zhao MZ, Wang TL, Wu P, et al. Isolation and characterization of GmMYBJ3, an R2R3-MYB transcription factor that affects isoflavonoids biosynthesis in soybean. Plos One. 2017;12(6):e0179990.
  • Liu Y, Liu J, Wang Y, et al. The different resistance of two astragalus plants to UV-B stress is tightly associated with the organ-specific isoflavone metabolism. Photochem Photobiol. 2018;94(1):115–125.
  • Gutierrez-Gonzalez JJ, Guttikonda SK, Tran LSP, et al. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant Cell Physiol. 2010;51(6):936–948.
  • Gao Y, Yao Y, Zhu YY, Ren GX. Isoflavone content and composition in chickpea (Cicer arietinum L.) sprouts germinated under different conditions. J Agric Food Chem. 2015;63(10):2701–2707.
  • Yoon Y, Seo DH, Shin H, et al. The role of Stress-Responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy-Basel. 2020;10(6):788–1041.
  • Wang WL, Cui X, Wang YX, et al. Members of R2R3-type MYB transcription factors from subgroups 20 and 22 are involved in abiotic stress response in tea plants. Biotechnol Biotechnological Equip. 2018;32(5):1141–1153.
  • Faraji S, Filiz E, Kazemitabar SK, et al. The AP2/ERF gene family in triticum durum: Genome-wide identification and expression analysis under drought and salinity stresses. Genes. 2020;11:1464.
  • Zhang GY, Chen M, Li LC, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot. 2009;60(13):3781–3796.
  • Ruan MB, Guo X, Wang B, et al. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). J Exp Bot. 2017;68(13):3657–3672.
  • Wei QH, Chen R, Wei X, et al. Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. Bmc Genomics. 2020;21(1):792.
  • Seo PJ, Lee SB, Suh MC, et al. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in arabidopsis. Plant Cell. 2011;23(3):1138–1152.
  • He YX, Dong YS, Yang XD, Guo DQ, et al. Functional activation of a novel R2R3-MYB protein gene, GmMYB68, confers salt-alkali resistance in soybean (Glycine max L.). Genome. 2020;63(1):13–26.