774
Views
0
CrossRef citations to date
0
Altmetric
Articles

Heterologous expression and enzymatic identification of two novel soluble pyridine nucleotide transhydrogenases from Acidobacteria bacterium KBS 146 and Nocardia jiangxiensis

, , &
Pages 1452-1460 | Received 09 Jul 2021, Accepted 28 Sep 2021, Published online: 13 Nov 2021

References

  • Liu J, Li H, Zhao G, et al. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. J Ind Microbiol Biotechnol. 2018;45(5):313–327.
  • Haverkorn van Rijsewijk BR, Kochanowski K, Heinemann M, et al. Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA. Microbiology (Reading). 2016;162(9):1672–1679.
  • Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem. 2004;279(8):6613–6619.
  • Voordouw G, van der Vies SM, Themmen APN. Why are two different types of pyridine nucleotide transhydrogenase found in living organisms? Eur J Biochem. 1983;131(3):527–533.
  • Spaans SK, Weusthuis RA, van der Oost J, et al. NADPH-generating systems in bacteria and archaea. Front Microbiol. 2015;29:742.
  • Alina S, Meike B, Michael B. NADPH-related processes studied with a SoxR-based biosensor in Escherichia coli. MicrobiologyOpen. 2018;8(7):e785.
  • Canonaco F, Hess TA, Heri S, et al. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett. 2001;204(2):247–252.
  • Hua Q, Yang C, Baba T, et al. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol. 2003;185(24):7053–7067.
  • Zhu GP, Golding GB, Dean AM. The selective cause of an ancient adaptation. Science. 2005;307(5713):1279–1282.
  • Zhao HJ, Wang P, Huang EQ, et al. Physiologic roles of soluble pyridine nucleotide transhydrogenase in Escherichia coli as determined by homologous recombination. Ann Microbiol. 2008;58(2):275–280.
  • Meng J, Wang B, Liu D, et al. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microb Cell Fact. 2016;15(1):141.
  • Fu J, Wang Z, Chen T, et al. NADH plays the vital role for chiral pure D-(-)-2, 3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng. 2014;111(10):2126–2131.
  • Fu J, Huo G, Feng L, et al. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol Biofuels. 2016;9:90.
  • Olajuyin AM, Yang M, Mu T, et al. Enhanced production of succinic acid from methanol-organosolv pretreated Strophanthus preussii by recombinant Escherichia coli. Bioprocess Biosyst Eng. 2018;41(10):1497–1508.
  • Robert N, Andreas A, Ilona W, et al. Engineering Pseudomonas putida KT2440 for the production of isobutanol. Eng Life Sci. 2020;20(5–6):148–159.
  • Li Z, Ding D, Wang H, et al. Engineering Escherichia coli to improve tryptophan production via genetic manipulation of precursor and cofactor pathways. Synth Syst Biotechnol. 2020;5(3):200–205.
  • Decorosi F, Lori L, Santopolo L, et al. Characterization of a Cr(VI)-sensitive Pseudomonas corrugata 28 mutant impaired in a pyridine nucleotide transhydrogenase gene. Res Microbiol. 2011;162(8):747–755.
  • Nikel PI, Pérez-Pantoja D, de Lorenzo V. Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol. 2016;18(10):3565–3582.
  • Lee HC, Kim JS, Jang W, et al. High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol. 2010;149(1–2):24–32.
  • Jan J, Martinez I, Wang Y, et al. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli. Biotechnol Prog. 2013;29(5):1124–1130.
  • Cai D, He P, Lu X, et al. A novel approach to improve poly-γ-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02. Sci Rep. 2017;7:43404.
  • Liu B, Xiang S, Zhao G, et al. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metab Eng. 2019;51:121–130.
  • Mu Q, Zhang S, Mao X, et al. Highly efficient production of L-homoserine in Escherichia coli by engineering a redox balance route. Metab Eng. 2021;67:321–329.
  • Xu W, Yao J, L. Ma, X L, et al. Improving squalene production by enhancing the NADPH/NADP+ ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli. Biotechnol Biofuels. 2019;12:68.
  • Chin JW, Khankal R, Monroe CA, et al. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng. 2009;102(1):209–220.
  • Luo ZW, Kim WJ, Lee SY. Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-4, 6-dicarboxylic acid from glucose. ACS Synth Biol. 2018;7(9):2296–2307.
  • Yang Z, Zhang Z. Production of (2R, 3R)-2, 3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnol Biofuels. 2018;11:35.
  • Cao Z, Song P, Xu Q, et al. Overexpression and biochemical characterization of a soluble pyridine nucleotide transhydrogenase from Escherichia coli. FEMS Microbiol Lett. 2011;320(1):9–14.
  • French CE, Boonstra B, Bufton KAJ, et al. Cloning, sequence, and properties of the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens. J Bacteriol. 1997;179(8):2761–2765.
  • Voordouw G, van der Vies S, Scholten JW, et al. Pyridine nucleotide transhydrogenase from Azotobacter vinelandii: differences in properties between the purified and the cell-free extract enzyme. Eur J Biochem. 1980;107(2):337–344.
  • van den Broek HWJ, Santema JS, Veeger C. Pyridine nucleotide transhydrogenase 3. Effect of NADP+ on the spectral properties of transhydrogenase from Azotobacter vinelandii. Eur J Biochem. 1971;24(1):55–62.
  • Boonstra B, Björklund L, French CE, et al. Cloning of the sth gene from Azotobacter vinelandii and construction of chimeric soluble pyridine nucleotide transhydrogenases. FEMS Microbiol Lett. 2000;191(1):87–93.
  • Wang P, Lv C, Zhu G. Novel type II and monomeric NAD+ specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Sci Rep. 2015;16:9150.
  • Collins PA, Knowles CJ. Transhydrogenase activity in the marine bacterium Beneckea natriegens. Biochim Biophys Acta. 1977;480(1):77–82.
  • Widmer F, Kaplan NO. Regulatory properties of the pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa. Kinetic studies and fluorescence titration. Biochemistry. 1976;15(21):4693–4699.
  • Argyrou A, Blanchard JS. Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol. 2004;78:89–142.
  • Bykova NV, Rasmusson AG, Igamberdiev AU, et al. Two separate transhydrogenase activities are present in plant mitochondria. Biochem Biophys Res Commun. 1999;265(1):106–111.
  • Thompson H, Tersteegen A, Thauer RK, et al. Two malate dehydrogenases in Methanobacterium thermoautotrophicum. Arch Microbiol. 1998;170(1):38–42.
  • van den Broek WJ, Veeger C. Pyridine-nucleotide transhydrogenase. 5. Kinetic studies on transhydrogenase from Azotobacter vinelandii. Eur J Biochem. 1971;24(1):72–82.
  • Mouri T, Shimizu T, Kamiya N, et al. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase. Biotechnol Prog. 2009;25(5):1372–1378.