2,955
Views
1
CrossRef citations to date
0
Altmetric
Review

Single-cell transcriptomics in the context of long-read nanopore sequencing

, , &
Pages 1439-1451 | Received 26 Aug 2021, Accepted 30 Sep 2021, Published online: 09 Nov 2021

References

  • Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21(1):1–35.
  • Schubert C. The deepest differences. Nature. 2011;472:1127–1131.
  • Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–382.
  • van Gelder RN, von Zastrow ME, Yool A, et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A. 1990;87(5):1663–1667.
  • Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–94.
  • Coufal NG, Garcia-Perez JL, Peng GE, et al. L1 retrotransposition in human neural progenitor cells. Nature. 2009;460(7259):1127–1131.
  • Schubert C. The deepest differences. Nature. 2011;460:1127–1131.
  • Schubert C. The deepest differences. Nature. 2011;472:90–94.
  • Teichmann S, Efremova M. Computational methods for single cell omics across modalities. Nat Methods. 2020;17:14–17.
  • Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17:77.
  • Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: Single-Cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2(3):666–673.
  • Choi JR, Yong KW, Choi JY, et al. Single-Cell RNA sequencing and its combination with protein and DNA analyses. Cells. 2020;9(5):1130.
  • Soumillon M, Cacchiarelli D, Semrau S, et al. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. 2014; bioRxiv 003236; DOI: 10.1101/003236.
  • Nichterwitz S, Chen G, Aguila Benitez J, et al. Laser capture microscopy coupled with smart-seq2 for precise spatial transcriptomic profiling. Nat Commun. 2016;7:12139.
  • DeLaughter DM. The use of the fluidigm C1 for RNA expression analyses of single cells. Curr Protocols Mol Biol. 2018;122(1):1–17,e55. DOI: 10.1002/cpmb.55.
  • Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for Single-Cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–1201.
  • Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter Droplets. Cell. 2015;161(5):1202–1214.
  • Picelli S, Faridani OR, Björklund ÅK, et al . Full-length RNA-seq from single cells using Smart-seq2 . Nat Protoc. 2014;9(1):171–181.
  • Sasagawa Y, Danno H, Takada H, et al. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads. Genome Biol. 2018;19(1):29.
  • Goldstein LD, Chen Y-JJ, Dunne J, et al. Massively parallel nanowell-based single-cell gene expression profiling. BMC Genomics. 2017;18(1):519.
  • Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11(2):163–166.
  • Islam S, Kjallquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21(7):1160–1167.
  • Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.
  • Kong SL, Li H, Tai JA, et al. Concurrent Single-Cell RNA and targeted DNA sequencing on an automated platform for comeasurement of genomic and transcriptomic signatures. Clin Chem. 2019;65(2):272–281.
  • Keren-Shaul H, Kenigsberg E, Jaitin DA, et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing . Nat Protoc. 2019;14(6):1841–1862.
  • Nayak R, Hasija Y. A hitchhiker’s guide to single-cell transcriptomics and data analysis pipelines. Genomics. 2021;113(2):606–619.
  • Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–59.
  • Pollard MO, Gurdasani D, Mentzer AJ, et al. Long reads: their purpose and place. Hum Mol Genet. 2018;27(R2):R234–R241.
  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–351.
  • Jeon SA, Park JL, Kim J-H, et al. Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing. Genomics Inform. 2019;17(3):e32.
  • Quail M, Smith ME, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics. 2012;13:341.
  • Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–352.
  • Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107(1):1–8.
  • Amarasinghe SL, Su S, Dong X, et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21(1):30.
  • Jain M, Olsen HE, Paten B, et al. The oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17(1):239.
  • Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19(90):1–11, DOI: 10.1186/s13059-018-1462-9.
  • Codina-Fauteux V-A, Beaudoin M, Lalonde S, et al. PHACTR1 splicing isoforms and eQTLs in atherosclerosis-relevant human cells. BMC Med Genet. 2018;19(1):97.
  • Park J-W, Jang H-J, Shin S, et al. Molecular analysis of alternative transcripts of the equine Cordon-Bleu WH2 repeat Protein-Like 1 (COBLL1) Gene. Asian-Australas J Anim Sci. 2015;28(6):870–875.
  • Wen L, Tang F. Single-cell sequencing in stem cell biology. Genome Biol. 2016;17(71):1–12, DOI: 10.1186/s13059-016-0941-0.
  • Zhong S, Zhang S, Fan X, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature. 2018;555(7697):524–528.
  • Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for oxford nanopore sequencing. Genome Biol. 2019;20(1):129.
  • Boža V, Brejová B, Vinař T. DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads. Plos One. 2017;12(6):e0178751.
  • Ewing B, Green P. Base-Calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8(3):186–194.
  • Ewing B, Hillier L, Wendl MC, et al. Base-Calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998;8(3):175–185.
  • Weirather JL, de Cesare M, Wang Y, et al. Comprehensive comparison of pacific biosciences and oxford nanopore technologies and their applications to transcriptome analysis. F1000Res. 2017;6:100.
  • Fu S, Wang A, Au KF. A comparative evaluation of hybrid error correction methods for error-prone long reads. Genome Biol. 2019;20(1):26.
  • Lima L, Marchet C, Caboche S, et al. Comparative assessment of long-read error correction software applied to nanopore RNA-sequencing data. Brief Bioinform. 2020;21(4):1164–1181.
  • Broseus L, Thomas A, Oldfield AJ, et al. TALC: Transcript-level aware long-read Correction. Bioinformatics. 2020;36(20):5000–5006.
  • Wang JR, Holt J, McMillan L, et al. FMLRC: Hybrid long read error correction using an FM-index. BMC Bioinformatics. 2018;19(1):50.
  • Zhang H, Jain C, Aluru S. A comprehensive evaluation of long read error correction methods. BMC Genomics. 2020;21(Suppl 6):889.
  • Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.
  • Vaser R, Sović I, Nagarajan N, et al. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27(5):737–746.
  • Jansen HJ, Liem M, Jong-Raadsen SA, et al. Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci Rep. 2017;7(1):7213.
  • Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation . Genome Res. 2017;27(5):722–736.
  • Schmidt MH-W, Vogel A, Denton AK, et al. De novo assembly of a new solanum pennellii accession using nanopore sequencing. Plant Cell. 2017;29(10):2336–2348.
  • Miller DE, Staber C, Zeitlinger J, et al. Highly contiguous genome assemblies of 15 drosophila species generated using nanopore sequencing. G3 (Bethesda). 2018;8(10):3131–3141.
  • Warren RL, Coombe L, Mohamadi H, et al. ntEdit: scalable genome sequence polishing. Bioinformatics. 2019;35(21):4430–4432.
  • Singh M, Al-Eryani G, Carswell S, et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat Commun. 2019;10(1):3120.
  • Lebrigand K, Magnone V, Barbry P, et al. High throughput error corrected nanopore single cell transcriptome sequencing. Nat Commun. 2020;11(1):4025.
  • Volden R, Palmer T, Byrne A, et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA Proceedings of the National Academy of Sciences of the United States of America 2018. 115.
  • Liu W, Zhang X. Single-cell alternative splicing analysis reveals dominance of single transcript variant. Genomics. 2020;112(3):2418–2425.
  • Long Y, Liu Z, Jia J, et al. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol. 2021;22(1):66.
  • Jia J, Long Y, Zhang H, et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat Plants. 2020;6(7):780–788.
  • Oguchi Y, Ozaki Y, Abdelmoez MN, et al. NanoSINC-seq dissects the isoform diversity in subcellular compartments of single cells. Sci Adv. 2021;7(15):eabe0317.
  • Tian L, Jabbari JS, Thijssen R, et al. Comprehensive characterization of single cell full-length isoforms in human and mouse with long-read sequencing. BioRxiv. 2020.
  • Wick RR, Judd LM, Gorrie CL, et al. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595.
  • Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17(2):155–158.
  • Li C, Chng KR, Boey EJH, et al. INC-Seq: accurate single molecule reads using nanopore sequencing. GigaScience. 2016;5(1):34.
  • Wilson BD, Eisenstein M, Soh HT. High-Fidelity nanopore sequencing of ultra-short DNA targets. Anal Chem. 2019;91(10):6783–6789. acs.analchem.
  • Simpson JT, Workman RE, Zuzarte PC, et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14(4):407–410.
  • Byrne A, Beaudin AE, Olsen HE, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun. 2017;8:16027.
  • Kuo RI, Tseng E, Eory L, et al. Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human. BMC Genomics. 2017;18(1):323.
  • Cole C, Byrne A, Beaudin AE, et al. Tn5Prime, a Tn5 based 5’ capture method for single cell RNA-seq. Nucleic Acids Res. 2018;46(10):e62.
  • Philpott M, Watson J, Thakurta A, et al. Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. Nat Biotechnol. 2021; DOI: 10.1038/s41587-021-00965-w.
  • Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 2017;27(3):491–499.