1,361
Views
1
CrossRef citations to date
0
Altmetric
Articles

Application of Pediococcus acidilactici BD16 (alaD+) expressing L-alanine dehydrogenase enzyme as a starter culture candidate for secondary wine fermentation

, , , &
Pages 1643-1661 | Received 27 Jul 2021, Accepted 14 Oct 2021, Published online: 18 Nov 2021

References

  • Alanon ME, Pérez-Coello MS, Marina ML. Wine science in the metabolomics era. TRAC-Trend Anal Chem. 2015;74:1–20.
  • Kaur B, Kumar B, Kaur G, et al. Application of recombinant Pediococcus acidilactici BD16 (fcs+/ech+) in malolactic fermentation. Appl Microbiol Biotechnol. 2015;99(7):3015–3028.
  • Pavlidou E, Mantzorou M, Fasoulas A, et al. Wine: an aspiring agent in promoting longevity and preventing chronic diseases. Diseases. 2018;6(3):73.
  • Davis CR, Wibowo D, Eschenbruch R, et al. Practical implications of malolactic fermentation: a review. Am J Enol Viticult. 1985;36(4):290–301.
  • Du Toit M, Engelbrecht L, Lerm E, et al. Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food Bioprocess Technol. 2011;4(6):876–906.
  • Liu CL, Wang JM, Chu CY, et al. In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxide-induced rat hepatotoxicity. Food Chem Toxicol. 2002;40(5):635–641.
  • Volschenk H, Van Vuuren HJJ, Viljoen-Bloom M. Malic acid in wine: origin, function and metabolism during vinification. S Afr J Enol Vitic. 2006;27:123–136.
  • Hatti-Kaul R, Chen L, Dishisha T, et al. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett. 2018;365(20):fny213.
  • Rodríguez RLG, Mohamed F, Bleckwedel J, et al. Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in Northern Argentina. Front Microbiol. 2019;10(1091):1091.
  • Sharma A, Gupta G, Ahmad T, et al. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J Microbiol Methods. 2020;170:105862.
  • Ayivi RD, Gyawali R, Krastanov A, et al. Lactic acid bacteria: Food safety and human health applications. Dairy. 2020;1(3):202–232.
  • Raj T, Chandrasekhar K, Kumar AN, et al. Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries. SMAB. 2021;1–27.
  • Sharma A, Singh RS, Gupta G, et al. Metabolic engineering of enzyme-regulated bioprocesses. In: Advances in enzyme technology. Amsterdam, The Netherlands: Elsevier Publications; 2019a;293–323.
  • Sharma A, Gupta G, Ahmad T, et al. Enzyme engineering: current trends and future perspectives. Food Rev Int. 2019b;37(2):121–154.
  • Börner RA, Kandasamy V, Axelsen AM, et al. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol Lett. 2019;366(1):fny291.
  • Liu J, Chan SHJ, Chen J, et al. Systems biology–a guide for understanding and developing improved strains of lactic acid bacteria. Front Microbiol. 2019;10(876):876.
  • Sharma A, Noda M, Sugiyama M, et al. Metabolic engineering of Pediococcus acidilactici BD16 for heterologous expression of synthetic alaD gene cassette and L-alanine production in the recombinant strain using fed-batch fermentation. Foods. 2021a;10(8):1964. 1.
  • Sharma A, Noda M, Sugiyama M, et al. Production of functional buttermilk and soymilk using Pediococcus acidilactici BD16 (alaD+). Molecules. 2021b;26(15):4671.
  • Braverman ER, Pfeiffer CE, Blum K, et al. Alanine: the hypoglycemia helper. In: The healing nutrients within: Facts, findings and new research on amino acids. 3rd ed. CA, United States of America: Accessible Publishing Systems Pty Ltd; 2009;461.
  • Brennan L, Shine A, Hewage C, et al. A nuclear magnetic resonance-based demonstration of substantial oxidative l-alanine metabolism and l-alanine-enhanced glucose metabolism in a clonal pancreatic beta-cell line: metabolism of L-alanine is important to the regulation of insulin secretion . Diabetes. 2002;51(6):1714–1721.
  • Tessem MB, Swanson MG, Keshari KR, et al. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med. 2008;60(3):510–516.
  • Dave UC, Kadeppagari RK. Alanine dehydrogenase and its applications - A review. Crit Rev Biotechnol. 2019;39(5):648–664.
  • Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol. 2005;69(1):1–8.
  • Oprea E, Ruta LL, Farcasanu IC. Pharmacological aspects and health impact of sports and energy drinks. In: Sports and energy drinks. Duxford, UK: Woodhead Publishing; 2019. p. 65–129.
  • Noda M, Miyauchi R, Danshiitsoodol N, et al. Expression of genes involved in bacteriocin production and self-resistance in Lactobacillus brevis 174A is mediated by two regulatory proteins. Appl Environ Microbiol. 2018;84(7):e02707–17.
  • Wada T, Noda M, Kashiwabara F, et al. Characterization of four plasmids harboured in a Lactobacillus brevis strain encoding a novel bacteriocin, brevicin 925A, and construction of a shuttle vector for lactic acid bacteria and Escherichia coli. Microbiology (Reading). 2009;155(Pt 5):1726–1737.
  • Kaur B, Chakraborty D, Kumar B. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology. Appl Microbiol Biotechnol. 2014a;98(20):8539–8551.
  • Son HS, Hong YS, Park WM, et al. A novel approach for estimating sugar and alcohol concentrations in wines using refractometer and hydrometer. J Food Sci. 2009;74(2):C106–C111.
  • Park WM, Park HG, Rhee SJ, et al. Properties of wine from domestic grape, vitis labrusca cultivar. Campbell’s early, fermented by carbonic maceration vinification process. Korean J Food Sci Technol. 2004;36(5):773–778.
  • Shah SA, Rathod IS, Kanakia D. Colorimetry method for estimation of glycine, alanine and isoleucine. Indian J Pharm Sci. 2007;69(3):462–464.
  • Shibatani T, Kakimoto T, Chibata I. Stimulation of L-asparate beta-decarboxylase formation by L-glutamate in Pseudomonas dacunhae and improved production of L-alanine. Appl Environ Microbiol. 1979;38(3):359–364.
  • Kaur B, Kumar B, Kaur N, et al. Role of Lactobacillus fermentum as a starter culture for malolactic fermentation to improve quality of white wines. World J Pharm Pharm Sci. 2014b;3(3):1687–1712.
  • Lim J, Wood A, Green BG. Derivation and evaluation of a labeled hedonic scale. Chem Senses. 2009;34(9):739–751.
  • Halket JM, Waterman D, Przyborowska AM, et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2005;56(410):219–243.
  • Iqbal Z, Mehmood HK, Hussain M, et al. Antioxidant activity of essential oil from the leaves and stems of murraya koenigii. WJPR. 2017;6(7):267–273.
  • Mariani TJ, Budhraja V, Mecham BH, et al. A variable fold change threshold determines significance for expression microarrays. Faseb J. 2003;17(2):321–323.
  • Kovač A, Majce V, Lenaršič R, et al. Diazenedicarboxamides as inhibitors of D-alanine-D-alanine ligase (DDL). Bioorg Med Chem Lett. 2007;17(7):2047–2054.
  • Uma M, Jothinayaki S, Kumaravel S, et al. Determination of bioactive components of plectranthus amboinicus lour by GC-MS analysis. N Y Sci J. 2011;4(8):66–69.
  • El-Emary TI. Synthesis and biological activity of some new pyrazolo [3, 4-b] pyrazines. J Chin Chem Soc. 2006;53(2):391–401.
  • Rassem H, Nour AH, Yunus RM. GC-MS analysis of bioactive constituents of hibiscus flower. Aust J Basic Appl Sci. 2017;11:91–97.
  • Ara I, Shinwari MMA, Rashed SA, et al. Evaluation of antimicrobial properties of two different extracts of Juglans regia tree bark and search for their compounds using gas chromatography-mass spectrum. Int J Biol. 2013;5(2):92.
  • Stanek J, Frei J, Mett H, et al. 2-Substituted 3-(aminooxy)propanamines as inhibitors of ornithine decarboxylase: synthesis and biological activity. J Med Chem. 1992;35(8):1339–1344.
  • Dias HR, Batdorf KH, Fianchini M, et al. Antimicrobial properties of highly fluorinated silver(I) tris(pyrazolyl)borates. J Inorg Biochem. 2006;100(1):158–160.
  • Wijekoon MJO, Bhat R, Karim AA, et al. Chemical composition and antimicrobial activity of essential oil and solvent extracts of torch ginger inflorescence (Etlingera elatior jack.). Int J Food Prop. 2013;16(6):1200–1210.
  • Obeidat M, Abu-Romman S, Odat N, et al. Antimicrobial and insecticidal activities of n-butanol extracts from some streptomyces isolates. Research J of Microbiology. 2017;12(4):218–228. doi:10.3923/jm.2017.218.228.
  • Roy CL, Naresh S, Sunil KS, et al. GCMS and FTIR analysis on the methanolic extract of red Vitis vinifera peel. World J Pharm Sci. 2018;7(8):1110–1123.
  • Seebacher W, Wolkinger V, Faist J, et al. Synthesis of 3-azabicyclo[3.2.2]nonanes and their antiprotozoal activities. Bioorg Med Chem Lett. 2015;25(7):1390–1393.
  • Lamba A. Antimicrobial activities of aldehydes and ketones produced during rapid volatilization of biogenic oils [thesis]. USA: University of Missouri-Rolla; 2007.
  • Hunt DE, Narkates AJ. Effect of actinobolin on nucleic acid and protein synthesis in Streptococcus faecalis. J Dent Res. 1971;50(6):1610–1615.
  • McGahen JW, Neumayer EM, Grunert RR, et al. Influenza infections of mice: ii. curative activity of α‐methyl‐1‐adamantanemethylamine hcl (rimantadine hcl. Ann NY Acad Sci. 1970;173(1 Second Confer):557–581.
  • Chen D, Wang Z, Zhang Y, et al. An amine: hydroxyacetone aminotransferase from Moraxella lacunata WZ34 for alaninol synthesis. Bioprocess Biosyst Eng. 2008;31(4):283–289.
  • Runti C, De MN, Fabrissin S. Antiviral chemotherapeutic agents. XVIII. Adamantane derivatives of amphetamine. Their potential interest as autonomic and antiparkinson agents. Farmaco Ed Sc. 1975;30(4):260–275.
  • Altaee N, Kadhim MJ, Hameed IH. Characterization of metabolites produced by E. coli AND analysis of its chemical compounds using GC-ms. Int J Curr Pharm Rev Res. 2017;7(6):13–19.
  • Api AM, Belsito D, Bhatia S, et al. RIFM fragrance ingredient safety assessment, benzyl alcohol, CAS registry number 100-51-6. Food Chem Toxicol. 2015;84:S1–S14.
  • Zan R, Hubbezoğlu I, Özdemir AK, et al. Antibacterial effect of different concentration of boric acid against Enterococcus faecalis biofilms in root canal. J Marmara Univ Dent Fac. 2013;1:76–80.
  • Lu J, Chen ZW. Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from drosophila virilis. Peptides. 2010;31(1):44–50.
  • Ray AS, Yang Z, Chu CK, et al. Novel use of a guanosine prodrug approach to convert 2’,3’-didehydro-2’,3’-dideoxyguanosine into a viable antiviral agent. Antimicrob Agents Chemother. 2002;46(3):887–891.
  • Lanznaster D, Dal-Cim T, Piermartiri TC, et al. Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis. 2016;7(5):657–679.
  • Kavitha R, Uduman MAM. Identification of bioactive components and its biological activities of abelmoschas moschatus flower Extrtact-A Gc-Ms study. IOSR J Appl Chem. 2017;10:19–22.
  • Shalini K, Sharma PK, Kumar N. Imidazole and its biological activities: a review. Der Chemica Sinica. 2010;1(3):36–47.
  • Bastin J, Boominathan M. Comparative analysis of the crude extract and active fraction of allium sativum against Streptococcus pnemoniae isolate from chronic illness patients. IJIPLS. 2011;1(2):28–35.
  • Hussain AZ, Kumaresan S. GC-MS analysis and antibacterial evaluation of acalypha indica. Asian J Plant Sci Res. 2013;3(6):46–49.
  • Denke MA, Grundy SM. Comparison of effects of lauric acid and palmitic acid on plasma lipids and lipoproteins. Am J Clin Nutr. 1992;56(5):895–898.
  • Akpuaka A, Ekwenchi MM, Dashak DA, et al. Biological activities of characterized isolates of n-hexane extract of azadirachta indica A. Juss (neem) leaves. Nat Sci. 2013;11(5):141–147.
  • Li H, Sumarah MW, Topp E. Persistence of the tricyclic antidepressant drugs amitriptyline and nortriptyline in agriculture soils. Environ Toxicol Chem. 2013;32(3):509–516.
  • Salim EI, Wanibuchi H, Morimura K, et al. Inhibitory effects of 1,3-diaminopropane, an ornithine decarboxylase inhibitor, on rat two-stage urinary bladder carcinogenesis initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine. Carcinogenesis. 2000;21(2):195–203.
  • Asif HM, Sultana S, Akhtar N. A panoramic view on phytochemical, nutritional, ethanobotanical uses and pharmacological values of trachyspermum ammi linn. Asian Pac J Trop Biomed. 2014;4:S545–S553.
  • Tao L, Sheng X, Zhang L, et al. Xanthatin anti-tumor cytotoxicity is mediated via glycogen synthase kinase-3β and β-catenin. Biochem Pharmacol. 2016;115:18–27.
  • Amal KH, Sabeeh H, Ahmed MA. In vitro activity of alkaloids extracted from chlorophyta and cyanophyta against the hydatid disease compared with albendazole. Thi-Qar Med J. 2011;5(3):56–70.
  • Singh S, More PK, Mohan SM. Curry leaves (murraya koenigii linn. Sprengal)-a mircale plant. Ind J Sci Res. 2014;4(1):46–52.
  • Karlsten R, Hartvig P. High frequency of cough after intravenous bolus injection of Ketogan (ketobemidone + N,N-dimethyl-3,3-diphenyl-1-methylallylamine chloride) for postoperative pain relief. Acta Anaesthesiol Scand. 1992;36(2):193–194.
  • Nibret E, Youns M, Krauth‐Siegel RL, et al. Biological activities of xanthatin from xanthium strumarium leaves. Phytother Res. 2011;25(12):1883–1890.
  • Laranjo M, Potes ME, Elias M. Role of starter cultures on the safety of fermented meat products. Front Microbiol. 2019;10(853):853–811.
  • Papagianni M, Anastasiadou S. Pediocins: the bacteriocins of pediococci. Sources, production, properties and applications. Microb Cell Fact. 2009;8(3):3–16.
  • Diamantidou D, Zotou A, Theodoridis G. Wine and grape marc spirits metabolomics. Metabolomics. 2018;14(12):159.
  • Dambergs R, Gishen M, Cozzolino D. A review of the state of the art, limitations, and perspectives of infrared spectroscopy for the analysis of wine grapes, must, and grapevine tissue. Appl Spectrosc Rev. 2015;50(3):261–278.
  • Gromski PS, Muhamadali H, Ellis DI, et al. A tutorial review: metabolomics and partial least squares-discriminant analysis-a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015;879:10–23.
  • Khakimov B, Gürdeniz G, Engelsen SB. Trends in the application of chemometrics to foodomics studies. Acta Aliment. 2015;44(1):4–31.
  • Cui Y, Li Q, Liu Z, et al. Simultaneous determination of 20 components in red wine by LC-MS: application to variations of red wine components in decanting. J Sep Sci. 2012;35(21):2884–2891.
  • Schmutzer G, Avram V, Coman V, et al. Determination of phenolic compounds from wine samples by GC/MS system. J Rev Chim. 2012;9:855–858.
  • Angioni A, Pintore GA, Caboni P. Determination of wine aroma compounds by dehydration followed by GC/MS. J AOAC Int. 2012;95(3):813–819.
  • do Nascimento Silva FL, Schmidt EM, Messias CL, et al. Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. Anal Methods. 2015;7(1):53–62.
  • Lambert M, Meudec E, Verbaere A, et al. A high-throughput UHPLC-QqQ-MS method for polyphenol profiling in rosé wines. Molecules. 2015;20(5):7890–7914.
  • Sherman E, Coe M, Grose C, et al. Metabolomics approach to assess the relative contributions of the volatile and non-volatile composition to expert quality ratings of pinot noir wine quality. J Agric Food Chem. 2020;68(47):13380–13396.
  • Altaee N, Kadhim MJ, Hameed IH. Characterization of metabolites produced by E. coli and analysis of its chemical compounds using GC-MS. Int J Curr Pharm Rev Res. 2017;7(6):13–19.