748
Views
0
CrossRef citations to date
0
Altmetric
Articles

Inhibition of ATP-synthase potentiates cytotoxicity of combination drug menadione/ascorbate in leukaemia lymphocytes

, , , , , & ORCID Icon show all
Pages 1738-1744 | Received 25 Jun 2021, Accepted 17 Oct 2021, Published online: 21 Jan 2022

References

  • Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314.
  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.
  • Palorini R, Simonetto T, Cirulli C, et al. Mitochondrial complex I inhibitors and forced oxidative phosphorylation synergize in inducing cancer cell death. Int J Cell Biol. 2013;2013:243876:
  • Liu H, Hu YP, Savaraj N, et al. Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry. 2001;40(18):5542–5547.
  • Fath MA, Diers AR, Aykin-Burns N, et al. Mitochondrial electron transport chain blockers enhance 2-deoxy-d-glucose induced oxidative stress and cell killing in human colon carcinoma cells. Cancer Biol Ther. 2009;8(13):1228–1236.
  • Fan J, Kamphorst JJ, Mathew R, et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol. 2013;9:712.
  • Vazquez F, Lim J-H, Chim H, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23(3):287–301.
  • Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11(1):9–15.
  • Vafai SB, Mevers E, Higgins KW, et al. Natural product screening reveals naphthoquinone complex I bypass factors. PLoS One. 2016;11(9):e0162686.
  • Majamaa K, Rusanen H, Remes A, et al. Metabolic interventions against complex I deficiency in MELAS syndrome. Mol Cell Biochem. 1997;174(1–2):291–296.
  • Chan TS, Teng S, Wilson JX, et al . Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1(NQO1)). Free Radic Res. 2002;36(4):421–427.
  • Eleff S, Kennaway NG, Buist NR, et al. 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci U S A. 1984;81(11):3529–3533.
  • U.S. Department of Health and Human Services (FDA) Home Page; National Institutes of Health (Office of Dietary supplements). Dietary Supplements for Primary Mitochondrial Disorders. Available from: https://ods.od.nih.gov/factsheets/PrimaryMitochondrialDisorders-HealthProfessional/ (accessed on 10 March 2021).
  • Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta. 2012;1826(2):443–457.
  • Aljuhani N, Michail K, Karapetyan Z, et al. The effect of bicarbonate on menadione-induced redox cycling and cytotoxicity: potential involvement of the carbonate radical. Can J Physiol Pharmacol. 2013;91(10):783–790.
  • Calderon PB, Cadrobbi J, Marques C, et al. Potential therapeutic application of the association of vitamins C and K3 in cancer treatment. Curr Med Chem. 2002;9(24):2271–2285.
  • Marriage B, Clandinin MT, Glerum DM. Nutritional cofactor treatment in mitochondrial disorders. J Am Diet Assoc. 2003;103(8):1029–1038.
  • Calderon PB, Verrax J, Taper HS. Targeting cancer cells by an oxidant-based therapy. Curr Mol Pharmacol. 2008;1(1):80–92.
  • Taper HS. Altered deoxyribonuclease activity in cancer and its role in non-toxic adjuvant cancer therapy with mixed vitamins C and K3. Anticancer Res. 2008;28:2727–2732.
  • Verrax J, Pedrosa RC, Beck R, et al. In situ modulation of oxidative stress: a novel and efficient strategy to kill cancer cells. Curr Med Chem. 2009;16(15):1821–1830.
  • Calderon PB, Beck R, Glorieux C. Targeting Hsp90 family members: a strategy to improve cancer cell death. Biochem Pharmacol. 2019;164:177–187.
  • Tareen B, Summers JL, Jamison JM, et al. A 12 week, open label, phase I/IIa study using apatone for the treatment of prostate cancer patients who have failed standard therapy. Int J Med Sci. 2008;5:62–67.
  • Lasalvia-Prisco E, Cucchi S, Vazquez J, et al. Serum markers variation consistent with autoschizis induced by ascorbic acid-menadione in patients with prostate cancer. Med Oncol. 2003;20(1):45–52.
  • U.S. National Library of Medicine Home Page. Double-blinded clinical trial using Apatone® for symptomatic postoperative total joint replacement (Apatone-B); ClinicalTrials.gov. Identifier:NCT01272830; Available from: https://clinicaltrials.gov/ct2/show/NCT01272830?term=apatone&draw=2&rank=1 (accessed on 10 March 2021).
  • Noto V, Taper HS, Jiang YH, et al. Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphoquionone (vitamin K3) treatment on human tumor cell growth in vitro. I. Synergism of combined vitamin C and K3 action. Cancer. 1989;63(5):901–906.
  • Semkova S, Zhelev Z, Miller T, et al. Menadione/ascorbate induces overproduction of mitochondrial superoxide and impairs mitochondrial function in cancer: comparative study on cancer and normal cells of the same origin. Anticancer Res. 2020;40(4):1963–1972.
  • Bakalova R, Semkova S, Ivanova S, et al. Selective targeting of cancerous mitochondria and suppression of tumor growth using redox-active treatment adjuvant. Oxid Med Cell Longev. 2020;2020:6212935.
  • Bakalova R, Zhelev Z, Miller T, et al. New potential biomarker for stratification of patients for pharmacological vitamin C in adjuvant settings of cancer therapy. Redox Biol. 2020;28:101357.
  • Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, et al. Mitochondrial proton and electron leaks. Essays Biochem. 2010;47:53–67.
  • Papa S, Skulachev VP. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem. 1997;174(1–2):305–319.
  • Hao W, Chang CP, Tsao CC, et al. Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization. J Biol Chem. 2010;285(17):12647–12654.
  • Crouch SP, Kozlowski R, Slater KJ, et al. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods. 1993;160(1):81–88.
  • Dikalov SI, Harrison DG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal. 2014;20(2):372–382.
  • Levraut J, Iwase H, Shao ZH, et al. Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol. 2003;284(2):H549–H558.
  • Teixeira J, Amorim R, Santos K, et al. Disruption of mitochondrial function as mechanism for anti-cancer activity of a novel mitochondriotropic menadione derivative. Toxicology. 2018;393:123–139.
  • De Oliveira MR, Liesa M. The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells. 2020;9(12):2600.
  • Dubouchaud H, Walter L, Rigoulet M, et al . Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse electron transfer through complex I. J Bioenerg Biomembr. 2018;50(5):367–377.
  • Robb EL, Hall AR, Prime TA, et al. Control of mitochondrial superoxide production by reverse electron transport at complex I. J Biol Chem. 2018;293(25):9869–9879.
  • Aguilar-Quesada R, Munoz-Games JA, Martin-Oliva D, et al. Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr Med Chem. 2007;14(11):1179–1187.
  • Porter AG, Urbano AG. Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays. 2006;28(8):834–843.
  • Gilloteaux J, Jamison JM, Neal DR, et al. Cell damage and death by autoschizis in human bladder (RT4) carcinoma cells resulting from treatment with ascorbate and menadione. Ultrastruct Pathol. 2010;34(3):140–160.