2,519
Views
0
CrossRef citations to date
0
Altmetric
Review

Gene drives in malaria control: what we need to know

, , , , , , , , & show all
Pages 1623-1631 | Received 21 Jul 2021, Accepted 17 Oct 2021, Published online: 15 Nov 2021

References

  • Noble C, Adlam B, Church GM, et al. Current CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife. 2018;7:e33423.
  • Esvelt KM, Smidler AL, Catteruccia F, et al. Concerning RNA-guided gene drives for the alteration of wild populations. eLife. 2014;3:e03401.
  • Beaghton A, Beaghton PJ, Burt A. Gene drive through a landscape: reaction-diffusion models of population suppression and elimination by a sex ratio distorter. Theor Popul Biol. 2016;108:51–69.
  • Nolan T. Control of malaria-transmitting mosquitoes using gene drives. Philos Trans R Soc Lond B Biol Sci. 2021;376(1818):20190803. https://doi.org/10.1098/rstb.2019.0803
  • James S, Collins FH, Welkhoff PA, et al. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in Sub-Saharan Africa: recommendations of a Scientific Working Group. Am J Trop Med Hyg. 2018;98(6_Suppl):1–49.
  • Marshall JM, Buchman A, Sanchez HM, et al. Overcoming evolved resistance to populationsuppressing homing-based gene drives. Sci Rep. 2017;7(1):3776.
  • Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17(3):146–159.
  • Hayirli TC, Martelli PF. Gene drives as a response to infection and resistance. Infect Drug Resist. 2019;12:229–234.
  • Hammond AM, Galizi R. Gene drives to fight malaria: current state and future directions. Pathog Glob Health. 2017;111(8):412–423.
  • Hoermann A, Tapanelli S, Capriotti P, et al. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. eLife. 2021;10:e58791.
  • Crans WJ. A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States. 2004. Available from: https://pdfs.semanticscholar.org/0a2d/3db372987ef00d954a52ca42ae0ed94002e5.pdf.
  • Waldbauer G. The handy bug answer book. Visible Ink Press; 1998. Available from: http://agris.fao.org/agris-search/search.do?recordID=US201300067714. Accessed on 25 October 2021.
  • Lundkvist E, Landin J, Jackson M, et al. Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bull Entomol Res. 2003;93(3):219–226.
  • Hubalek J, Halouzka J. West Nile fever – a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis. 1999;5(5):643–650.
  • Rueda LM. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue virus transmission. Zootaxa. 2004;589(1):1–60. https://doi.org/10.11646/zootaxa.589.1.1.
  • Kindhauser MK, Allen T, Frank V, et al. Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ. 2016;94(9):675–686C.
  • Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372(13):1231–1239.
  • Gubler DJ. Human arbovirus infections worldwide. Ann N Y Acad Sci. 2006;951(1):13–24.
  • Cartolovni A. Teilhard de Chardin’s oeuvre within an ongoing discussion of a gene drive release for public health reasons. Life Sci Soc Policy. 2017;13(1):18. https://doi.org/10.1186/s40504-017-0064-8.
  • Stark KR, James AA. Isolation and characterization of the gene encoding a novel factor Xa-directed anticoagulant from the yellow fever mosquito, Aedes aegypti. J Biol Chem. 1998;273(33):20802–20809.
  • Ha YR, Oh SR, Seo ES, et al. Detection of heparin in the salivary gland and midgut of Aedes togoi. Korean J Parasitol. 2014;52(2):183–188.
  • Schneider BS, Higgs S. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans R Soc Trop Med Hyg. 2008;102(5):400–408.
  • Chen L, He Z, Qin L, et al. Antitumor effect of malaria parasite infection in a murine lewis lung cancer model through induction of innate and adaptive immunity. PLos One. 2011;6(9):e24407.
  • Yang Y, Liu Q, Lu J, et al. Exosomes from Plasmodium-infected hosts inhibit tumor angiogenesis in a murine Lewis lung cancer model. Oncogenesis. 2017;6(6):e351–e351.
  • Bhatt S, Weiss DJ, Cameron E, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207–211.
  • Eckhoff PA, Wenger EA, Godfray CJ, et al. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci USA. 2017;114(2):E255–E264.
  • Ménard D, Khim N, Beghain J, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374(25):2453–2464.
  • Barnes KG, Weedall GD, Ndula M, et al. Genomic footprints of selective sweeps from metabolic resistance to pyrethroids in African malaria vectors are driven by scale up of insecticide-based vector control. PLoS Genet. 2017;13(2):e1006539. https://doi.org/10.1371/journal.pgen.1006539.
  • Wang S, Jacobs-Lorena M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 2013;31(3):185–193.
  • Pike A, Dong Y, Dizaji NB, et al. Changes in the microbiota cause genetically modified anopheles to spread in a population. Science. 2017;357(6358):1396–1399.
  • Lovett B, Bilgo E, Milogo SA, et al. Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso. Science. 2019;364(6443):894–897.
  • Carvalho DO, McKemey AR, Garziera L, et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis. 2015;9(7):e0003864.
  • Swale DR, Engers DW, Bollinger SR, et al. An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria. Sci Rep. 2016;6:36954.
  • European Network of Scientists for Social and Environmental Responsibility. Gene drives: a report on their science, applications, social aspects, ethics and regulations. Dressel H, editor. 2019. p. 34 [cited 2021 Oct 7]. https://www.Gene-Drive-Report-2019-WEB.pdf.
  • Kyrou K, Hammond AM, Galizi R, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36(11):1062–1066.
  • Noble C, Min J, Olejarz J, et al. Daisy-chain gene drives for the alteration of local populations. Proc Natl Acad Sci USA. 2019;116(17):8275–8282.
  • Scudellari M. Self-destructing mosquitoes and sterilized rodents: the promise of gene drives. Nature. 2019;571(7764):160–162.
  • Deredec A, Burt A, Godfray HCJ. The population genetics of using homing endonuclease genes in vector and pest management. Genetics. 2008;179(4):2013–2026.
  • Burt A, Coulibaly M, Crisanti A, et al. Gene drive to reduce malaria transmission in Sub-Saharan Africa. J Responsible Innov. 2018;5(sup1):S66–S80.
  • Sreenivasamurthy SK, Dey G, Ramu M, et al. A compendium of molecules involved in vector pathogen interactions pertaining to malaria. Malar J. 2013;12(216):216.
  • Catteruccia F, Benton JP, Crisanti A. An anopheles transgenic sexing strain for vector control. Nat Biotechnol. 2005;23(11):1414–1417.
  • Papathanos PA, Windbichler N, Menichelli M, et al. The vasa regulatory region mediates germline expresiion and maternal transmission of proteins in malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies. BMC Mol Biol. 2009;10(65):65.
  • Galizi R, Doyle LA, Menichelli M, et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun. 2014;5:3977. https://doi.org/10.1038/ncomms4977.
  • Marshall JM, Akbari OS. Gene drive strategies for population replacement. In: Adelman ZN, editor. Genetic control of malaria and dengue. London (UK): Academic Press; 2016. p. 169–200.
  • Tu Z, Li S. Mobile genetic elements of malaria vectors and other mosquitoes. 2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6186/
  • Benetta ED, Akbari OS, Ferree PM. Sequence expression of supernumerary B chromosomes: function or fluff? Genes. 2019;10(2):123. Accessed on 25 October 2021.
  • Funk C, Rainie L. 2015. Public and scientists’ views on science and society. https://www.researchgate.net/publication/279513537_Public_and_Scientists’_Views_on_Science_and_Society. Accessed on 25 October 2021.