1,238
Views
1
CrossRef citations to date
0
Altmetric
Articles

Trichoderma asperellum promotes cadmium accumulation within maize seedlings

, , &
Pages 1546-1559 | Received 16 Jul 2021, Accepted 19 Oct 2021, Published online: 21 Nov 2021

References

  • Han YL, Yuan HY, Huang SZ, et al. Cadmium tolerance and accumulation by two species of iris. Ecotoxicology. 2007;16(8):557–563.
  • Günther K, Ji G, Kastenholz B. Characterization of high molecular weight cadmium species in contaminated vegetable food. Fresenius J Anal Chem. 2000;368(2–3):281–287.
  • Branca JJV, Morucci G, Pacini A. Cadmium-induced neurotoxicity: still much ado. Neural Regen Res. 2018;13(11):1879–1882.
  • Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J. 2010;94(2):99–107.
  • Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot. 2001;52(358):1101–1109.
  • León AM, José M, Palma FJC, et al. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem. 2002;40(10):813–820.
  • Boominathan R, Doran PM. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng. 2003;83(2):158–167.
  • Paradiso A, Berardino R, de Pinto MC, et al. Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol. 2008;49(3):362–374.
  • Buendia-Gonzalez L, Orozco-Villafuerte J, Cruz-Sosa F, et al. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol. 2010;101(15):5862–5867.
  • Milone MT, Sgherri C, Clijsters H, et al. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot. 2003;50(3):265–276.
  • Yang XE, Long XX, Ye HB, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyper accumulating plant species (Sedum alfredii Hance). Plant Soil. 2004;259(1/2):181–189.
  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, et al. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 2006;29(8):1532–1544.
  • Liu L, Li J, Yue F, et al. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere. 2018;194:495–503.
  • Fan L, Song J, Bai W, et al. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil. Sci Rep. 2016;6:21027.
  • Bournonville B, Nzihou A, Sharrock P, et al. Stabilisation of heavy metal containing dusts by reaction with phosphoric acid: Study of the reactivity of fly ash. J Hazard Mater. 2004;116(1-2):65–74.
  • Ward ML, Bitton G, Townsend T. Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates. Chemosphere. 2005;60(2):206–215.
  • Fasani E, Manara A, Martini F, et al. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 2018;41(5):1201–1232.
  • Afridi MS, Mahmood T, Salam A, et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem: PPB. 2019;139:569–577.
  • Shahid M, Javed MT, Masood S, et al . Serratia sp. CP-13 augments the growth of cadmium (Cd)-stressed Linum usitatissimum L. by limited Cd uptake, enhanced nutrient acquisition and antioxidative potential. J Appl Microbiol. 2019;126(6):1708–1721..
  • Hussain A, Kamran MA, Javed MT, et al. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ Exp Bot. 2019;159:23–33.
  • Kanwal U, Ali S, Shakoor MB, et al. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environ Sci Pollut Res Int. 2014;21(16):9899–9910.
  • Ali NA, Bernal MP, Ater M. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil. 2002;239(1):103–111.
  • Chiu KK, Ye ZH, Wong MH . Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere. 2005;60(10):1365–1375.
  • Lin Q, Shen KL, Zhao HM, et al. Growth response of Zea mays L. in pyrene–copper co-contaminated soil and the fate of pollutants. J Hazard Mater. 2008;150(3):515–521.
  • Zhang S, Lin H, Deng L, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecol Eng. 2013;51:133–139.
  • Read DJ, Ducket JG, Francis R, et al. Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci. 2000;355(1398):815–830.,
  • Aly AH, Debbab A, Proksch P . Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol. 2011;90(6):1829–1845..
  • Mohamed RM, Abo-Amer AE. Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. J Basic Microbiol. 2012;52(1):53–65.. PMID: 22435113.
  • García-Sánchez M, Palma JM, Ocampo JA, et al. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants. J Plant Physiol. 2014;171(6):421–428.
  • Zhang J, Han W, Huang L, et al. Leaf chlorophyll content estimation of winter wheat based on visible and near-Infrared sensors. Sensors (Basel)). 2016;16(4):437.
  • Cheng D, Tan M, Yu H, et al. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BioMed Central. 2018;19:709..
  • Wang H, Chen Z, Liu G, et al. Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection. Plant Physiol Biochem. 2017;118:256–266.
  • Rizzardo C, Tomasi N, Monte R, et al . Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. Planta. 2012;236(6):1701–1712.
  • Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28(4):1327–1350.
  • Hashem A, Tabassum B, Fathi Abd Allah E. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 2019;26(6):1291–1297.
  • Figlioli F, Sorrentino MC, Memoli V, et al. Overall plant responses to Cd and Pb metal stress in maize: growth pattern, ultrastructure, and photosynthetic activity. Environ Sci Pollut Res Int. 2019;26(2):1781–1790.
  • Suzuki N, Koizumi N, Sano H. Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ. 2001;24(11):1177–1188.
  • Errampalli D, Leung K, Cassidy MB, et al. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J Microbiol Methods. 1999;35(3):187–199.
  • Shi Y, Li C, Yang H, et al. Colonization study of gfp-tagged Achromobacter marplatensis strain in sugar beet. J Microbiol. 2017;55:267–272.
  • Xu JX, Li ZY, Lv X, et al. Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization. PLoS One. 2020;15(4):e0232096.
  • Zhang Y, Tian C, Xiao J, et al. Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Expr. 2020;10(1):189.
  • Zhao L, Wang Y, Kong S. Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. Int Microbiol. 2020;23(4):501–509.
  • Singh S, Eapen S, D’Souza SF . Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere. 2006;62(2):233–246.
  • Ferreira RR, Fornazier RF, Vitória AP, et al. Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr. 2002;25(2):327–342.
  • Kochhar S, Kochhar VK. Expression of antioxidant enzymes and heat shock proteins in relation to combined stress of cadmium and heat in Vigna mungo seedlings. Plant Sci. 2005;168(4):921–929.
  • Nguyen C, Soulier AJ, Masson P, et al. Accumulation of cd, Cu and Zn in shoots of maize (Zea mays L.) exposed to 0.8 or 20 nM Cd during vegetative growth and the relation with xylem sap composition. Environ Sci Pollut Res Int. 2016;23(4):3152–3164.
  • Mendoza-Cózatl DG, Jobe TO, Hauser F, et al. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol. 2011;14(5):554–562.
  • Wang JL, Li T, Liu GY, et al. Unraveling the role of dark septate endophyte (DSE) colonizing maize (zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep. 2016;6:22028.
  • Migocka M, Kosieradzka A, Papierniak A, et al. Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. J Exp Bot. 2015;66(3):1001–1015.
  • Gong JM, Lee DA, Schroeder JI. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci U S A. 2003;100(17):10118–10123.
  • Chen A, Komives EA, Schroeder JI. An improved grafting technique for mature arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in arabidopsis. Plant Physiol. 2006;141(1):108–120.
  • Shukla D, Kesari R, Mishra S, et al. Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep. 2012;31(9):1687–1699.
  • Agarwal P, Reddy MP, Chikara J. WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep. 2011;38(6):3883–3896.
  • Hong C, Cheng D, Zhang G, et al. The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun. 2017;482(4):1504–1510.
  • Wang T, Hua Y, Chen M, et al. Mechanism enhancing Arabidopsis resistance to cadmium: the role of NRT1.5 and proton pump. Front Plant Sci. 2018;9:1892.
  • Astolfi S, Zuchi S, Passera C . Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. J Plant Physiol. 2004;161(7):795–802.
  • McClure PR, Kochian LV, Spanswick RM, et al . Evidence for cotransport of nitrate and protons in maize roots: I. Effects of nitrate on the membrane potential. Plant Physiol. 1990;93(1):281–289.
  • Nocito FF, Espen L, Crema B, et al. Cadmium induces acidosis in maize root cells. New Phytol. 2008;179(3):700–711.
  • Rivera-Becerril F, Calantzis C, Turnau K, et al. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot. 2002;53(371):1177–1185.