1,949
Views
1
CrossRef citations to date
0
Altmetric
Articles

Observation of Spirulina platensis cultivation in a prototype household bubble column photobioreactor during 107 days

, , , , &
Pages 1669-1679 | Received 01 Jul 2021, Accepted 03 Nov 2021, Published online: 01 Dec 2021

References

  • Hosseini S, Shahbazizadeh S, Khosravi-Darani K, et al. Spirulina paltensis: food and function. CNF. 2013;9(3):189–193.
  • Belay A, Kato T, Ota Y. Spirulina (arthrospira): potential application as an animal feed supplement. J Appl Phycol. 1996;8(4–5):303–311.
  • Rempel A, de Souza Sossella F, Margarites AC, et al. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol. 2019;288:121588.
  • Wang H-MD, Chen C-C, Huynh P, et al. Exploring the potential of using algae in cosmetics. Bioresour Technol. 2015;184:355–362.
  • Zhou W, Li Y, Gao Y, et al. Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresour Technol. 2017;245(Pt A):10–17.
  • Khan Z, Bhadouria P, Bisen P. Nutritional and therapeutic potential of spirulina. Curr Pharm Biotechnol. 2005;6(5):373–379.
  • Desmorieux H, Hernandez F. Biochemical and physical criteria of spirulina after different drying processes. In: Silva MA, Rocha SCS, editors. Proceedings of the 14th International Drying Symposium. São Paulo City, Brazil, 22–25 August 2004. UNICAMP, 2004. Vol. B: 900–907.
  • Bennamoun L, Afzal MT, Léonard A. Drying of alga as a source of bioenergy feedstock and food supplement - a review. Renew Sust Energy Rev. 2015;50:1203–1212.
  • Tello-Ireland C, Lemus-Mondaca R, Vega-Gálvez A, et al. Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga gracilaria chilensis. LWT - Food Sci Technol. 2011;44(10):2112–2118.
  • Costa BR, Rocha SF, Rodrigues MCK, et al. Physicochemical characteristics of the spirulina sp. dried in heat pump and conventional tray dryers. Int J Food Sci Technol. 2015;50(12):2614–2620.
  • Kuatrakul I, Kuarthongsri P, Yabuuchi C, et al. Sensory descriptive analysis and physicochemical properties of spirulinaplatensis from different drying processes: hot air drying and microwave vacuum drying. Curr Appl Sci Technol. 2017;17(2):191–199.
  • Agustini T, Soetrisnanto D, Ma’ruf W. Study on chemical, physical, microbiological and sensory of yoghurt enriched by Spirulina platensis. Int Food Res J. 2017;24(1):367–371.
  • Ting H, Haifeng L, Shanshan M, et al. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int J Agri Bio Eng. 2017;10(1):1–29.
  • Ma Z, Ahmed F, Yuan B, et al. Fresh living arthrospira as dietary supplements: current status and challenges. Trends Food Sci Technol. 2019;88:439–444.
  • Oncel S, Sukan FV. Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis (Spirulina platensis). Bioresour Technol. 2008;99(11):4755–4760.
  • Xue S, Su Z, Cong W. Growth of Spirulina platensis enhanced under intermittent illumination. J Biotechnol. 2011;151(3):271–277.
  • Soni RA, Sudhakar K, Rana RS. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Rep. 2019;5:327–336.
  • Cao X, Xi Y, Liu J, et al. New insights into the CO2-steady and pH-steady cultivations of two microalgae based on continuous online parameter monitoring. Algal Res. 2019;38:101370.
  • Liu C, Zou D, Yang Y, et al. Temperature responses of pigment contents, chlorophyll fluorescence characteristics, and antioxidant defenses in Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) under different CO2 levels. J Appl Phycol. 2017;29(2):983–991.
  • Havlik I, Reardon KF, Ünal M, et al. Monitoring of microalgal cultivations with on-line, flow-through microscopy. Algal Res. 2013;2(3):253–257.
  • Havlik I, Lindner P, Scheper T, et al. On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol. 2013;31(7):406–414.
  • White S, Anandraj A, Bux F. PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol. 2011;102(2):1675–1682.
  • Wu Y-H, Yu Y, Li X, et al. Biomass production of a scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresour Technol. 2012;112:193–198.
  • Praveen P, Loh K-C. Nutrient removal in an algal membrane photobioreactor: effects of wastewater composition and light/dark cycle. Appl Microbiol Biotechnol. 2019;103(8):3571–3580.
  • Zhai J, Li X, Li W, et al. Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecol. Eng. 2017;108:83–92.
  • Liu H, Chen H, Wang S, et al. Optimizing light distribution and controlling biomass concentration by continuously pre-harvesting Spirulina platensis for improving the microalgae production. Bioresour Technol. 2018;252:14–19.
  • Yu H, Kim J, Lee C. Potential of mixed-culture microalgae enriched from aerobic and anaerobic sludges for nutrient removal and biomass production from anaerobic effluents. Bioresour Technol. 2019;280:325–336.
  • Soni RA, Sudhakar K, Rana RS. Spirulina - from growth to nutritional product: a review. Trends Food Sci Technol. 2017;69:157–171.
  • Patel P, Jethani H, Radha C, et al. Development of a carotenoid enriched probiotic yogurt from fresh biomass of spirulina and its characterization. J Food Sci Technol. 2019;56(8):3721–3731.
  • Zeng X, Danquah MK, Zhang S, et al. Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chem Eng J. 2012;183:192–197.
  • Leduy A, Therien N. An improved method for optical density measurement of the semimicroscopic blue green alga Spirulina maxima. Biotechnol Bioeng. 1977;19(8):1219–1224.
  • Jung F, Jung CGH, Krüger-Genge A, et al. Factors influencing the growth of Spirulina platensis in closed photobioreactors under CO2 - O2 conversion. JCB. 2019;5(2):125–134.
  • Ainas M, Hasnaoui S, Bouarab R, et al. Hydrogen production with the cyanobacterium Spirulina platensis. Int J Hydrog Energy. 2017;42(8):4902–4907.
  • Krishnamoorthy S, Manickam P, Muthukaruppan V. Evaluation of distillery wastewater treatability in a customized photobioreactor using blue-green microalgae – laboratory and outdoor study. J Environ Manage. 2019;234:412–423.
  • Moreira J, Terra A, Costa J, et al. Utilization of CO2 in semi-continuous cultivation of Spirulina sp. and Chlorella fusca and evaluation of biomass composition. Braz J Chem Eng. 2016;33(3):691–698.
  • Kean MA, Delgado EB, Mensink BP, et al. Iron chelating agents and their effects on the growth of Pseudokirchneriella subcapitata, Chlorella vulgaris, Phaeodactylum tricornutum and Spirulina platensis in comparison to Fe- EDTA. J. Algal Biomass Util. 2015;6(1):56–73.
  • Batac CC, Gathercole NS, Maravilla AF, et al. Evaluation of different carbonate sources for bicarbonate-based integrated carbon capture and algae production system using Spirulina platensis. IOP Conf Ser Mater Sci Eng. 2020;778:012041.
  • Hossain N, Mahlia TMI. Progress in physicochemical parameters of microalgae cultivation for biofuel production. Crit Rev Biotechnol. 2019;39(6):835–859.
  • Su CM, Hsueh HT, Tseng CM, et al. Effects of nutrient availability on the biomass production and CO2 fixation in a flat plate photobioreactor. Aerosol Air Qual Res. 2017;17(7):1887–1897.
  • Kona R, Hemalatha M, Venu Srivastav K, et al. Regulatory effect of Fe-EDTA on mixotrophic cultivation of Chlorella sp. towards biomass growth and metabolite production. Bioresour Technol. 2017;244(Pt 2):1227–1234.
  • Chegukrishnamurthi M, Shahabazuddin M, Sreevathsan S, et al. Ozonation as non-thermal option for bacterial load reduction of chlorella biomass cultivated in airlift photobioreactor. J. Clean. Prod. 2020;276(123029):123029.