11,952
Views
14
CrossRef citations to date
0
Altmetric
Review

Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms

, , , , , , & ORCID Icon show all
Pages 1912-1925 | Received 30 Jun 2021, Accepted 14 Dec 2021, Published online: 09 Feb 2022

References

  • Boyer JS. Plant productivity and environment. Science. 1982;218:443–444.
  • Yadav S, Modi P, Dave A, et al. Effect of abiotic stress on crops. In: Hasanuzzaman M, editor. Sustainable crop production. Rijeka, Croatia: InTech; 2020. p. 3–23.
  • Saini HS, Westgate ME. Reproductive development in graincrops during drought. Adv Agron. 2000;68:59–96.
  • Mansoor S, Kour N, Manhas S, et al. Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere. 2020;271:129458.
  • IPCC. 2012. Special report on renewable energy sources and climate change mitigation. Nairobi: UNEP.
  • Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep. 2021;1–31.
  • Jeyasri R, Muthuramalingam P, Satish L, et al. An overview of abiotic stress in cereal crops: negative impacts, regulation, biotechnology and integrated omics. Plants. 2021;10(7):1472.
  • Farooq M, Basra S, Wahid A, et al. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci. 2009;195(4):237–246.
  • Turyagyenda LF, Kizito EB, Ferguson M, et al. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AoB Plants. 2013;5:plt007.
  • Fahad S, Bajwa AA, Nazir U, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147.
  • Alghabari F, Ihsan MZ, Hussain S, et al. Effect of rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. Environ Sci Pollut Res Int. 2015;22:15506–15515.
  • Alghabari F, Ihsan MZ, Khaliq A, et al. Gibberellin- sensitive rht alleles confer tolerance to heat and drought stresses in wheat at booting stage. J Cereal Sci. 2016;70:72–78.
  • Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24(1):23–58.
  • Gong P, Zhang J, Li H, et al. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot. 2010;61(13):3563–3575.
  • Golldack D, Li C, Mohan H, et al. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. 2014;5:151.
  • Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol. 2014;65:715–741.
  • Joshi R, Wani SH, Singh B, et al. Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci. 2016;7:1029.
  • Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62:4731–4748.
  • . Joshi R, Singh B, Bohra A, et al. Salt stress signalling pathways: specificity and crosstalk. In: Wani SH, Hossain MA, editors. Managing salinity tolerance in plants: molecular and genomic perspectives. Boca Raton, FL: CRC Press; 2016b. p. 51–78.
  • Lata C, Muthamilarasan M, Prasad M. Drought stress responses and signal transduction in plants. In: Pandey G, editor. Elucidation of abiotic stress signaling in plants. New York, NY: Springer; 2015. p. 195–225.
  • Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, et al . DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA. 2014;111:2367–2372.
  • Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. 2013;4:248.
  • Villano C, Esposito S, D’Amelia V, et al. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Sci Rep. 2020;10(1):1–12.
  • Lu Y, Zhu JK. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant. 2017;10(3):523–525.
  • Zong Y, Wang Y, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. 2017;35(5):438.
  • Dalla Costa L, Malnoy M, Gribaudo I. Breeding next generation tree fruits: technical and legal challenges. Hortic Res. 2017;4(1):1–11.
  • Klap C, Yeshayahou E, Bolger AM, et al . Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J. 2017;15(5):634–647.
  • Bhargava S, Sawant K. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed. 2013;132(1):21–32.
  • Rahdari P, Hoseini SM. Drought stress: a review. Intl J Agron Plant Prod. 2012;3:443–446.
  • Amelework B, Shimelis H, Tongoona P, et al. Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: a review. Afr J Agric Res. 2015;10(31):3029–3040.
  • Boyer JS, Westgate ME. Grain yields with limited water. J Exp Bot. 2004;55(407):2385–2394.
  • Pandey V, Shukla A. Acclimation and tolerance strategies of rice under drought stress. Rice Sci. 2015;22(4):147–161.
  • Rostamza M, Chaichi M-R, Jahansooz MR, et al. Effects of water stress and nitrogen fertilizer on multi-cut forage pearl millet yield, nitrogen, and water use efficiency. Commun Soil Sci Plant Anal. 2011;42(20):2427–2440.
  • Ayub M, Ashraf MY, Kausar A, et al. Growth and physio-biochemical responses of maize (Zea mays L.) to drought and heat stresses. Plant Biosys. 2021;155(3):535–542.
  • Jaleel CA, Manivannan P, Wahid A, et al. Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol. 2009;11:100–105.
  • Osakabe Y, Osakabe K, Shinozaki K, et al. Response of plants to water stress. Front Plant Sci. 2014;5:1–7.
  • Kozlowski TT, Pallardy SG. Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev. 2002;68(2):270–334.2.0.CO;2]
  • Hsiao TC, Xu LK. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot. 2000;51(350):1595–1616.
  • Aslam M, Zamir MSI, Afzal I, et al. Role of potassium in physiological functions of spring maize (Zea mays L.) grown under drought stress. J Anim Plant Sci. 2014;24(5):1452–1465.
  • Anjum SA, Xie XY, Wang LC, et al. Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res. 2011b;6(9):2026–2032.
  • Singh D, Laxmi A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci. 2015;6:895.
  • Liu JH, Peng T, Dai W. Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. Plant Mol Biol Rep. 2016;32(2):303–317.
  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci. 2015;6:84.
  • Pérez-Clemente RM, Vives V, Zandalinas SI, et al. Biotechnological approaches to study plant responses to stress. Biomed Res Int. 2013;2013:654120.
  • Huang GT, Ma SL, Bai LP, et al. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep. 2012;39(2):969–987.
  • Danquah A, de Zelicourt A, Colcombet J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv. 2014;32(1):40–52.
  • Hirayama T, Shinozaki K . Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J. 2010;61:1041–1052.
  • Mizoi J, Ohori T, Moriwaki T, et al . GmDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol. 2013;161:346–361.
  • Anjum SA, Farooq M, Xie XY, et al. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci Hortic. 2012;140:66–73.
  • Farag RE, Abdelbar O, Shehata SA. Impact of drought stress on some growth, biochemical and anatomical parameters of thymus vulgaris L. Arab Universities J Agric Sci. 2019;27(1):37–50.
  • Anjum SA, Tanveer M, Ashraf U, et al. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ Sci Pollut Res Int. 2016;23(17):17132–17141.
  • Mathobo R, Marais D, Steyn JM. The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agric Water Manag. 2017;180:118–125.
  • Latif F, Ullah F, Mehmood S, et al. Effects of salicylic acid on growth and accumulation of phenolics in Zea mays L. under drought stress. Acta Agric Scand B Soil Plant Sci. 2016;66(4):325–332.
  • Wang A, Lam SK, Hao X, et al. Elevated CO2 reduces the adverse effects of drought stress on a high-yielding soybean (Glycine max (L.) merr.) cultivar by increasing water use efficiency. Plant Physiol. Biochem. 2018;132:660–665.
  • Amtmann A, Blatt MR. Regulation of macronutrient transport. New Phytol. 2009;181:35–52.
  • Nawaz F, Shehzad MA, Majeed S, et al. Role of mineral nutrition in improving drought and salinity tolerance in field crops. Singapore: Springer; 2020. p. 129–147.
  • Kheradmand MA, Fahraji SS, Fatahi E, et al. Effect of water stress on oil yield and some characteristics of brassica napus. Int Res J Appl Basic Sci. 2014;8(9):1447–1453.
  • Dubey RS, Pessarakli M. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Pessarakli M , editor. Handbook of plant and crop physiology. Boca Raton (FL): CRC Press; 2001. p. 659–678.
  • Hu Y, Schmidhalter U. Drought and salinity: a comparison of their effects on mineral nutrition of plants. Z Pflanzenernähr Bodenk. 2005;168(4):541–549.
  • Ahanger MA, Morad-Talab N, Abd-Allah EF, et al. Plant growth under drought stress. Significance of mineral nutrients. In: Ahmad P, editor. Water stress and crop plants. Chichester, West Sussex (UK): Wiley; 2016. p. 649–668.
  • Hu Y, Burucs Z, von Tucher S, et al. Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ Exp Bot. 2007;60(2):268–275.
  • Murata Y, Mori IC. Stomatal regulation of plant water status. In: Jenks MA, Hasegawa PM, editors. Plant abiotic stress. 2nd ed. Ames, IO: Wiley; 2014. p. 47–67.
  • Liu Y, Ye N, Liu R, et al. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in arabidopsis seed dormancy and germination. J Exp Bot. 2010;61(11):2979–2990.
  • Taiwo AF, Daramola O, Sow M, et al. 2020. Ecophysiology and responses of plants under drought. In: Hasanuzzaman M, editor. Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Singapore: Springer; p. 231–268.
  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–399.
  • Foyer CH, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005;28(8):1056–1071.
  • Muhammad I, Shalmani A, Ali M, et al. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci. 2021;11:2310.
  • Saeidi M, Abdoli M. Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. J Agric Sci Technol. 2018;17(4):885–898.
  • Bray EA. Plant response to water-deficit stress. Encycl Life Sci. 2001.
  • Sapeta H, Costa JM, Lourenco T, et al. Drought stress response in Jatropha curcas: growth and physiology. Environ ExpBot. 2013;85:76–84.
  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103(4):551–560.
  • Nezhadahmadi A, Hossain Prodhan Z, Faruq G. Drought tolerance in wheat. Sci World J. 2013;2013:1–12.
  • Chernyad’ev II. Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins: a review. Appl Biochem and Microbiol. 2005;41(2):115–128.
  • Salehi-Lisar SY, Motafakkerazad R, Hossain MM, et al. Water stress in plants: causes, effects and responses, water stress. In: Rahman IMM, Hasegawa H, editors. Water stress. Rijeka, Croatia: InTech; 2012. p. 1–14.
  • Kebbas S, Lutts S, Aid F. Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage. Photosynt. 2015;53(2):288–298.
  • Nazar R, Umar S, Khan NA, et al. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. S AfrJ Bot. 2015;98:84–94.
  • Verma KK, Song XP, Zeng Y, Li DM, Guo DJ, Rajput VD, … & Li YR.  Characteristics of leaf stomata and their relationship with photosynthesis in saccharum officinarum under drought and silicon application. ACS Omega. 2022;5(37):24145–24153.
  • Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X.. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant. 2016;38(2), 48.
  • Saud S, Yajun C, Fahad S, et al. Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ Sci Pollut Res. 2016;23(17):17647–17655. doi:10.1007/s11356-016-6957-x.
  • Meng LL, Song JF, Wen J, et al. Effects of drought stress on fluorescence characteristics of photosystem II in leaves of plectranthus scutellarioides. Photosynt. 2016;54(3):414–421.
  • Maghsoudi K, Emam Y, Pessarakli M. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J Plant Nutr. 2016;39(7):1001–1015.
  • Sivakumar R, Nandhitha G, Nithila S. Impact of drought on chlorophyll, soluble protein, abscisic acid, yield and quality characters of contrasting genotypes of tomato (Solanum lycopersicum). BJAST. 2017;21(5):1–10.
  • Hossain MA, Mostofa MG, Fujita M. Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (brassica campestris L.) seedlings. Mol Plant Breed. 2013;4(7):50–70.
  • Zou YN, Wu QS, Kuča K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol J. 2021;23(S1):50–57.
  • Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:251–275.
  • Chaudhuri A, Kar RK. Inhibition of seed germination by propyl gallate, a free radical scavenger and recovery of germination by hydrogen peroxide and ethylene in vigna radiata. World J Agri Sci. 2008;4:914–921.
  • Garnczarska M, Wojtyla L. Differential response of antioxidative enzymes in embryonic axes and cotyledons of germinating lupine seeds. Acta Physiol Plant. 2008;30(4):427–432.
  • Foreman J, Demidchik V, Bothwell JH, Mylona P, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422(6930):442–446.
  • Liszkay A, van der Zalm E, Schopfer P . Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 2004;136(2):3114–3123.
  • Schopfer P, Plachy C, Frahry G . Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol. 2001;125:1591–1602.
  • Castro B, Citterico M, Kimura S, et al. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat Plants. 2021;7(4):403–412.
  • Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant. 2003;119(3):355–364.
  • Hung SH, Yu CW, Lin CH. Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin. 2005;46:1–10.
  • Neill SJ, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot. 2002;53(372):1237–1247.
  • Demidchik V, Shabala SN, Davies JM. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J. 2007;49(3):377–386.
  • Takeda S, Gapper C, Kaya H, et al. Local positive feedback regulation determines cell shape in root hair cells. Science. 2008;319(5867):1241–1244.
  • Hancock J, Desikan R, Harrison J, et al. Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot. 2006;57(8):1711–1718.
  • Desikan R, Neill SJ, Hancock JT . Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radic Biol Med. 2000;28(5):773–778.
  • Desikan R, Soheila AH, Hancock JT, et al. Regulation of the arabidopsis transcriptome by oxidative stress. Plant Physiol. 2001;127(1):159–172.
  • Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444(2):139–158.
  • Carvalho MD. Drought stress and reactive oxygen species. Plant Signal Behav. 2008;3:156–165.
  • Kumar M, Tak Y, Potkule J, et al. Phenolics as plant protective companion against abiotic stress. In: Lone R, Shuab R, Kamili AN , editors. Plant phenolics in sustainable agriculture. Singapore: Springer; 2020. p. 277–308.
  • Ali AA, Alqurainy F. Activities of antioxidants in plants under environmental stress. In: Motohashi N, editor. The lutein-prevention and treatment for diseases. Trivandrum (India): Transworld Research Network; 2006. p. 187–256.
  • Harb A, Awad D, Samarah N. Gene expression and activity of antioxidant enzymes in barley (hordeum vulgare L.) under controlled severe drought. J Plant Interact. 2015;10(1):109–116.
  • Noman A, Ali S, Naheed F, et al. Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci. 2015;61(12):1659–1672.
  • Agarwal PK, Agarwal P, Reddy MK, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006;25:1263–1274.
  • Farooq M, Basra SMA, Wahid A, et al. Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop. 2008;194(5):325–333.
  • Pareek A, Sopory SK, Bohnert HK, et al. Abiotic stress adaptation in plants: Physiolgical, molecular and genomic foundation. Dordrecht: Springer; 2010.
  • Aguado A, Capote N, Romero F, et al . Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement. Plant Sci. 2014;227:37–44.
  • Fàbregas N, Yoshida T, Fernie AR. Role of raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nature Commun. 2020;11(1):1–11.
  • Sah SK, Reddy KR, Li J. Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci. 2016;7:571.
  • Manna M, Thakur T, Chirom O, et al. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant. 2021;172(2):847–868.
  • Maruyama KY, Todaka DA, Mizoi JU, et al. 2012. Identification of cis-acting promoter elements in cold-and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1): 37–49.
  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K . Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant. 2013;147:15–27.
  • Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development. Plant Cell Rep. 2013;32(7):959–970.
  • Yao T, Zhang J, Xie M, et al. Transcriptional regulation of drought response in arabidopsis and woody plants. Front Plant Sci. 2020;11:572137.
  • Fujita Y, Fujita M, Shinozaki K, et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. 2011;124(4):509–525.
  • Bauer H, Ache P, Lautner S, et al . The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol. 2013;23(1):53–57.
  • Kuromori T, Sugimoto E, Shinozaki K. Intertissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiol. 2014;164(4):1587–1592.
  • Behnam BA, Iuchi SA, Fujita MI, et al. Characterization of the promoter region of an arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res. 2013;20(4):315–324.
  • Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, et al. Structure and function of abscisic acid receptors. Trends Plant Sci. 2013;18(5):259–266.
  • Joo H, Baek W, Lim CW, et al. Post-translational modifications of bZIP transcription factors in abscisic acid signaling and drought responses. Curr Genom. 2021;22(1):4–15.
  • Barbosa EGG, Leite JP, Marin SRR, et al. Overexpression of the ABA dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Mol Biol Rep. 2013;31(3):719–730.
  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, et al . Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005;138(1):341–351.
  • Rashid M, Guangyuan H, Guangxiao Y, et al. AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocotsand eudicots. Evol Bioinform. 2012;8:EBO–S9369.
  • Cao S, Wang Y, Li X, et al. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in ammopiptanthus nanus. Plants. 2020;9(4):455.
  • Ritonga FN, Ngatia JN, Wang Y, et al. AP2/ERF, an important cold stress-related transcription factor family in plants: a review. Physiol Mol Biol Plants. 2021;27(9):1953–1916.
  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci. 2014;5:170.
  • Lucas S, Durmaz E, Akpınar BA, et al. The drought response displayed by a DRE-binding protein from triticum dicoccoides. Plant Physiol Biochem. 2011;49(3):346–351.
  • Dong MA, Farré EM, Thomashow MF. 2011. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci 108(17): 7241–7246.
  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol. 2011;52(9):1569–1582.
  • Datta K, Baisakh N, Ganguly M, et al. Overexpression of arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J. 2012;10(5):579–586.
  • Paul S, Gayen D, Datta SK, et al. Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress. Plant Sci. 2015;234:133–143.
  • Iwaki T, Guo L, Ryals JA, et al. Metabolic profiling of transgenic potato tubers expressing arabidopsis dehydration response element-binding protein 1A (DREB1A). J Agric Food Chem. 2013;61(4):893–900.
  • Phuong ND, Tuteja N, Nghia PT, et al. Identification and characterization of a stress- inducible gene OsNLI-IF enhancing drought tolerance in transgenic tobacco. Curr Sci. 2015;109(3):541–551.
  • Bhatnagar-Mathur P, Rao JS, Vadez V, et al. Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed. 2014;33(2):327–340.
  • Augustine SM, Narayan JA, Syamaladevi DP, et al. Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (saccharum spp. hybrid). Plant Cell Rep. 2015;34(2):247–263.
  • De Paiva Rolla AA, Carvalho JD, Fuganti-Pagliarini R, et al . Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res. 2014;23(1):75–87.
  • Riaz MW, Lu J, Shah L, et al. Expansion and molecular characterization of AP2/ERF gene family in wheat (Triticum aestivum L.). Front Genet. 2021;12:632155.
  • Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol. 2020;40(6):750–776.
  • Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 2012;17(6):369–381.
  • Hong Y, Zhang H, Huang L, et al . Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci. 2016;7:4.
  • Le DT, Nishiyama RIE, Watanabe Y, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 2011;18(4):263–276.
  • Llorca CM, Potschin M, Zentgraf U . BZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front Plant Sci. 2014;5:169
  • Liu J, Chen N, Chen F, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genom. 2014;15(1):281
  • Nijhawan A, Jain M, Tyagi AK, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 2008;146(2):333–350.
  • Pourabed E, Golmohamadi FG, Monfared PS, et al. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis. Mol Biotechnol. 2015;57(1):12–26.
  • Liu X, Chu Z. Genome-wide evolutionary characterization and analysis ofBzip transcription factors and their expression profiles in response to multiple abiotic stresses in brachypodiumdistachyon. BMC Genom. 2015;16:227.
  • Liao Y, Zou HF, Wei W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic arabidopsis. Planta. 2008;228(2):225–240.
  • Borrelli VM, Brambilla V, Rogowsky P, et al. The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci. 2018;9:1245.
  • Hanley-Bowdoin L, Bejarano ER, Robertson D, et al . Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11:777–788.
  • Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57–63.
  • Ji X, Zhang H, Zhang Y, et al . Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants . Nat Plants. 2015;1:15144.
  • Jia N, Patel DJ. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol. 2021;22(8):563–517.
  • Cong Á, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/cas systems. Science. 2013;339(6121):819–823.
  • Jaganathan D, Ramasamy K, Sellamuthu G, et al. CRISPR for crop improvement: an update review. Front Plant Sci. 2018;9:985.
  • Karkute SG, Singh AK, Gupta OP, et al. CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci. 2017;8:1635.
  • Osakabe Y, Watanabe T, Sugano SS, et al. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep. 2016;6:26685.
  • Wang L, Chen L, Li R, et al. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem. 2017;65(39):8674–8682.
  • Biswas D, Saha SC, Dey A. CRISPR-Cas genome-editing tool in plant abiotic stress-tolerance. Plant Gene. 2021;26:100286.
  • Zhang D, Zhang Z, Unver T, et al . CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res. 2020;29:207–221.
  • Ma X, Zhu Q, Chen Y, et al. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant. 2016;9(7):961–974.
  • Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):686–688.
  • Shi J, Gao H, Wang H, et al . ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J. 2017;15(2):207–216.
  • Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, et al. Genome editing in plants: an overview of tools and applications. Int J Agron. 2017;2017:1–15.
  • Cao D, Li Y, Liu B, et al. Adaptive mechanisms of soybean grown on salt-affected soils. Land Degrad Dev. 2018;29(4):1054–1064.
  • Nasr Esfahani M, Inoue K, Chu HD, et al. Comparative transcriptome analysis of nodules of two mesorhizobium-chickpea associations with differential symbiotic efficiency under phosphate deficiency. Plant J. 2017;91:911–926.
  • Flint-Garcia SA. Genetics and consequences of crop domestication. J Agric Food Chem. 2013;61:8267–8276.
  • Oerke EC. Crop losses to pests. J Agric Sci. 2006;144(1):31–43.
  • Ricroch A, Clairand P, Harwood W. Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci. 2017;1(2):169–182.
  • Zhao Y, Zhang C, Liu W, et al. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep. 2016;6(1):23890–11.
  • Xie K, Yang Y . RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant. 2013;6(6):1975–1983.
  • Zhang H, Zhang J, Wei P, et al . The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation . Plant Biotechnol J. 2014;12(6):797–807.
  • Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, et al . Genome editing using CRISPR/Cas9-targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol Biochem. 2018;131:31–36.
  • Liu X, Wu S, Xu J, et al. Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B. 2017;7(3):292–302.
  • Noman A, Aqeel M, He S. CRISPR-Cas9: tool for qualitative and quantitative plant genome editing. Front Plant Sci. 2016;7:1740.
  • Wright AV, Nuñez JK, Doudna JA . Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell. 2016;164(1–2):29–44.