2,214
Views
0
CrossRef citations to date
0
Altmetric
Articles

Bioinformatic analysis of promoter, motifs and CpG islands of genes encoding potassium transporters in crop plants

ORCID Icon & ORCID Icon
Pages 1809-1819 | Received 01 Jul 2021, Accepted 21 Dec 2021, Published online: 10 Jan 2022

References

  • Maathuis FJ. Physiological functions of mineral macronutrients. Curr Opin Plant Biol. 2009;12(3):250–258.
  • Gierth M, Maser P, Schroeder JI . The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots. Plant Physiol. 2005;137(3):1105–1114.
  • Ashley MK, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot. 2006;57(2):425–436.
  • Gajdanowicz P, Michard E, Sandmann M, et al. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA. 2011;108(2):864–869.
  • Britto DT, Kronzucker HJ. Cellular mechanisms of potassium transport in plants. Physiol Plant. 2008;133(4):637–650.
  • Wang Y, Wu WH . Potassium transport and signaling in higher plants. Annu Rev Plant Biol. 2013;64:451–476.
  • Very AA, Nieves-Cordones M, Daly M, et al. Molecular biology of K + transport across the plant cell membrane: What do we learn from comparison between plant species? J Plant Physiol. 2014;171(9):748–769.
  • Gupta MX, Qiu L, Wang L, et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genom. 2008;280:437–452.
  • He C, Cui K, Duan A, et al. Genome-wide and molecular evolution analysis of the poplar KT/HAK/KUP. Potassium transporter gene family. Ecol Evol. 2012;2(8):1996–2004.
  • Uozumi N, Kim EJ, Rubio F, et al. The arabidopsis HKT1 gene homolog mediates inward Na(+) currents in xenopus laevis oocytes and Na(+) uptake in Saccharomyces cerevisiae. Plant Physiol. 2000;122(4):1249–1259.
  • Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 2001;27:115–128.
  • Fairbairn DJ, Liu WH, Schachtman DP, et al. Characterization of two distinct HKT1-like potassium transporters from eucalyptus camaldulensis. Plant Mol Biol. 2000;43(4):515–525.
  • Ahn SJ, Shin R, Schachtman DP. Expression of KT/KUP genes in arabidopsis and the role of root hairs in K+ uptake. Plant Physiol. 2004;134(3):1135–1145.
  • Banuelos MA, Garciadeblas B, Cubero B, et al. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 2002;130(2):784–795.
  • Rubio F, Santa-María GE, Rodríguez-Navarro A. Cloning of arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol. Plant. 2000;109(1):34–43.
  • Cheng X, Liu X, Mao W, et al. Genome-Wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum aestivum L.). IJMS. 2018;19(12):3969.
  • Berendzen KW, Stüber K, Harter K, et al. Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves. BMC Bioinf. 2006;7(1):522.
  • Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet. 2011;13(1):59–69. 10.1038/nrg3095
  • Han L, Zhongming Z. CpG islands or CpG clusters: how to identify functional GC-rich regions in a genome. BMC Bioinform. 2009;10:65.
  • Mariño-Ramírez L, Tharakaraman K, Spouge JL, et al. Promoter analysis: Gene regulatory motif identification with AGLAM. Methods Mol Biol. 2009;537:263–276.
  • Kaur G, Pati PK. Analysis of cis-acting regulatory elements of respiratory burst oxidase homolog (rboh) gene families in arabidopsis and rice provides clues for their diverse functions. Comput Biol Chem. 2016;62:104–118.
  • Kaur A, Pati PK, Pati AM, et al. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One. 2017;12(9):e0184523.
  • Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.
  • Gupta S, Stamatoyannopoulos JA, Bailey TL, et al. Quantifying similarity between motifs. Genome Biol. 2007;8(2):R24.
  • Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA. 2002;99(6):3740–3745.
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–425.
  • Wang X, Bandyopadhyay S, Xuan Z, et al. Prediction of transcription starts sites based on feature selection using AMOSA. Proc LSS Comput Syst Bioinform Conf. 2007;6:183–193.
  • Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem. 2001;26(1):51–56.
  • Yirgu M, Kebede M. Analysis of the promoter region, motif and CpG islands in AraC family transcriptional regulator ACP92 genes of Herbaspirillum seropedicae. ABB. 2019;10(06):150–164.
  • Beshir JA, Kebede M. In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiae S288C and Schizosaccharomyces pombe 972h. J Genet Engin Biotechnol. 2021;19:8.
  • Triska M, Solovyev V, Baranova A, et al . Nucleotide patterns aiding in prediction of eukaryotic promoters. PLoS One. 2017;12(11):e0187243.
  • Koo SC, Choi MS, Chun HJ, et al. Identification and characterization of alternative promoters of the rice MAP kinase gene OsBWMK1. Mol Cells. 2009;27(4):467–473.
  • Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014;217–218:109–119.
  • Thangasamy S, Chen PW, Lai MH, et al. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters. Plant J. 2012;71(2):288–320. 10.1111/j.1365-313X.2012.04989.x
  • Shahmuradov IA, Solovyev VV, Gammerman AJ. Plant promoter prediction with confidence estimation. Nucleic Acids Res. 2005;33(3):1069–1076.
  • Wang Y, Lü J, Chen D, et al. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear. Genome. 2018;61(10):755–765.
  • Song Z, Wu X, Gao Y, et al. Genome-wide analysis of the HAK potassium transporter gene family reveals asymmetrical evolution in tobacco (Nicotiana tabacum). Genome. 2019;62(4):267–278.
  • Zhang Z, Zhang J, Chen Y, et al . Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Mol Biol Rep. 2012;39(8):8465–8473.
  • Han D, Huang M, Wang T, et al. Lysine methylation of transcription factors in cancer. Cell Death Dis. 2019;10(4):290.
  • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–1022.
  • Ashikawa I. Gene-associated CpG islands in plants as revealed by analyses of genomic sequences. Plant J. 2001;26(6):617–625.
  • Amrutha RN, Sekhar PN, Varshney RK, et al. Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Sci. 2007;172(4):708–721.
  • Liang M, Gao Y, Mao T, et al. Characterization and expression of KT/HAK/KUP transporter family genes in willow under potassium deficiency, drought, and salt stresses. BioMed Res Int. Volume 2020;2690760.