1,268
Views
1
CrossRef citations to date
0
Altmetric
Articles

Integration of transcriptomics and metabolomics to identify key coumarin biosynthetic genes in Bupleurum chinense

, , , , , , , , , , , & ORCID Icon show all
Pages 1858-1868 | Received 01 Sep 2021, Accepted 22 Dec 2021, Published online: 21 Jan 2022

References

  • Ashour ML, Wink M. Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action. J Pharm Pharmacol. 2011;63(3):305–321.
  • Luo S. Studies on the chemical constituents of the aerial parts of Bupleurum chinense DC. China J Chinese Materia Medica. 1988;13(1):36–38.
  • Wei X, Li CZ, Yong B, et al. Saikosaponins inhibit increased glutamate and GABA expressions in the hippocampus of pentetrazole-induced slow kindling rats. J Southern Medical Univ. 2006;26:1132–1135.
  • Xiao GS, Yang Y, Sun WY, et al. Study on extraction technology of active ingredients from Bupleurum chinense DC. Huangshi: Lishizhen Medicine and Materia Medica Research; 2008.
  • Li R. Analysis of effective components and pharmacological action of bupleurum chinense. Shaanxi J Traditional Chinese Med. 2013;34:750–751.
  • Tong H, Tian D, He Z, et al. Polysaccharides from Bupleurum chinense impact the recruitment and migration of neutrophils by blocking fMLP chemoattractant receptor-mediated functions. Carbohydr Polym. 2013;92(2):1071–1077.
  • Huan-Le F, Bei-Bei Y, Rong-Li, Yan-Bin C. Research on the mechanism of Chaihu Huangqin medicine based on integrated pharmacology to improve the clinical symptoms of COVID-19. J Hainan Med Univ. 2020;26(12):15–19.
  • Li XQ, Song YN, Wang SJ, et al. Saikosaponins: a review of pharmacological effects. J Asian Nat Prod Res. 2018;20(1):1–13.
  • Gevrenova R, Zheleva-Dimitrova D, Ruseva S, et al. Cytotoxic and hepatoprotective effects of Bupleurum flavum flavonoids on hepatocellular carcinoma HEP-G2 cells. J Pharmaceut Res Int. 2016;11:1–8.
  • Shan Y, Feng X, Dong Y, et al. The advance on the research of chemical constituents and pharmacological activities of bupleurum. Chinese Wild Plant Resour. 2004;4:5–7.
  • Dridi S, Laraoui H, Gasmi AI. Phytochemical study of Algerian Bupleurum atlanticum murb (apiaceae). Der Pharmacia Lettre. 2016;8:246–248.
  • Lu M, Meng Q, Liu X. Traditional Chinese medicine radix Bupleuri research were reviewed. For alI Health. 2017;11:24.
  • Yan M, Yang L, Hou A, et al. Research progress on chemical composition and pharmacological effect of Bupleurum chinense. Formation Traditional Chinese Med. 2018;035:103–109.
  • Parvin K, Hasanuzzaman M, Mohsin SM, et al. Coumarin improves tomato plant tolerance to salinity by enhancing antioxidant defense, glyoxalase system and ion homeostasis. Plant Biol J. 2021;23(S1):181–192.
  • Bian X, Zhao Q, Bu F, et al. Effect and evaluation of different drying methods on phenylpropanoid compounds in cinnamomi ramulus. Modern Chinese Med. 2020;22:71–75.
  • Wang F, Chen H, Ai Y, et al. The effect of coumarin on plant priming. Genom Appl Biol. 2017;036:2094–2096.
  • Tan G. Research progress on influencing factors of bupleuri seed germination. Shaanxi J Agric Sci. 2018;064:87–90.
  • Dai Y, Zhao Y, Zhang M, et al. The physiological and pharmacological activities of coumarin compounds. Shandong Chem Ind. 2021;50:30–31.
  • Sumorek-Wiadro J, Zając A, Bądziul D, et al. Coumarins modulate the anti-glioma properties of temozolomide. Eur J Pharmacol. 2020;881:173207.
  • Shruti M, Achyut P, Siddharth M. Coumarin: an emerging antiviral agent. Heliyon. 2020;6:e03217.
  • Zhao Y, Liu T, Luo J, et al. Integration of a decrescent transcriptome and metabolomics dataset of Peucedanum praeruptorum to investigate the CYP450 and MDR genes involved in coumarins biosynthesis and transport. Front Plant Sci. 2015;6:996.
  • Liu T, Yao R, Zhao Y, et al. Cloning, functional characterization and site-directed mutagenesis of 4-coumarate: coenzyme a ligase (4CL) involved in coumarin biosynthesis in Peucedanum praeruptorum dunn. Front Plant Sci. 2017;8:4.
  • Yadav V, Wang Z, Wei C, et al. Phenylpropanoid pathway engineering: an emerging approach towards plant defense. Pathogens. 2020;9(4):312.
  • Shi Y, Zhang S, Peng D, et al. De novo transcriptome analysis of Cnidium monnieri (L.) cuss and detection of genes related to coumarin biosynthesis. PeerJ. 2020;8:e10157.
  • Ruben V, Lisa S, Carol SK, et al. COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nat Plants. 2019;5(10):1066–1075.
  • Jin Y, Li H, Feng C. Transcriptome-metabolomics analysis and its application in studying drug action mechanism. Biotechnol Bull. 2018;34:68–76.
  • Du J. Analysis on the transcriptome of Bupleuri radix through RNA-Seq [master’s thesis]. Xian (China): Shanxi Agricultural University; 2015.
  • Zhang M-y, Zhang Y-Q, Li Y-M, et al. Complete plastid genomesof Bupleurum chinense DC. and B. boissieuanum H. Wolff, with a comparative analysis and phylogenetic study of medicinal Bupleurum species. Acta Pharmaceutica Sin. 2021;56:618–629.
  • Wilson ID, Gika H, Theodoridis G, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5(6):1005–1018.
  • Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–1083.
  • Wen B, Mei Z, Zeng C, et al. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinf. 2017;18(1):14.
  • Anne-Laure B, Korbinian S. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings Bioinf. 2007;8:32–44.
  • Wang J-B, Pu S-B, Sun Y, et al. Metabolomic profiling of autoimmune hepatitis: the diagnostic utility of nuclear magnetic resonance spectroscopy. J Proteome Res. 2014;13(8):3792–3801.
  • Haspel JA, Chettimada S, Shaik RS, et al. Circadian rhythm reprogramming during lung inflammation. Nat Commun. 2014;5:4753.
  • Heischmann S, Quinn K, Cruickshank-Quinn C, et al. Exploratory metabolomics profiling in the kainic acid rat model reveals depletion of 25-hydroxyvitamin D3 during epileptogenesis. Sci Rep. 2016;6:31424.
  • Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–914.
  • Xi C, Xie C, Sun L, et al. Longitudinal metabolomics profiling of Parkinson’s disease-related α-synuclein A53T transgenic mice. PLoS One. 2015;10(8):e0136612.
  • Rao G, Sui J, Zhang J. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol Open. 2016;5(6):829–836.
  • Salmela L, Rivals E. LoRDEC: accurate and efficient long read error correction. Bioinformatics. 2014;30(24):3506–3514.
  • Fu L, Niu B, Zhu Z, et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152.
  • Shimizu K, Adachi J, Muraoka Y. ANGLE: a sequencing errors resistant program for predicting protein coding regions in unfinished cDNA. J Bioinform Comput Biol. 2006;04(03):649–664.
  • Sun L, Luo H, Bu D, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.
  • Kong L, Zhang Y, Ye Z, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server Issue):W345–W349.
  • Finn RD, Coggill P, Eberhardt RY, et al. The pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–D285.
  • Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics. 2014;15:311.
  • Zheng Y, Jiao C, Sun H, et al . iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant. 2016;9(12):1667–1670.
  • Li W, Jaroszewski L, Godzik A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics. 2002;18(1):77–82.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–29.
  • Tatusov RL, Fedorova ND, Jackson JD, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41–14.
  • Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database Issue):D277–D280.
  • Amos B, Rolf A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000;28(1):45–48.
  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.
  • Anders S. Analysing RNA-Seq data with the DESeq package. Mol Biol. 2010;43:1–17.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.
  • Su K, Wen A, Liu J. Determination of total coumarin in Glehnia littoralis. J North Pharmacy. 2019;16:1–3.
  • Tian F, He X, Sun J, et al. Simultaneous quantitative analysis of nine constituents in six Chinese medicinal materials from Citrus genus by high-performance liquid chromatography and high-resolution mass spectrometry combined with chemometric methods. J Sep Sci. 2020;43(4):736–747.
  • Kreidl M, Rainer M, Jakschitz T, et al. Determination of phototoxic furanocoumarins in natural cosmetics using SPE with LC-MS. Anal Chim Acta. 2020;1101:211–221.
  • Ziegler J, Schmidt S, Strehmel N, et al. Arabidopsis transporter ABCG37/PDR9 contributes primarily highly oxygenated coumarins to root exudation. Sci Rep. 2017;7(1):3704.
  • Wu Q, Zhu X, Shen R. Mechanism of boron facilitate root cell wall iron reutilization in iron deficient. J Plant Nutr Fertil. 2019;025:264–273.
  • Jian X, Zhao Y, Wang Z, et al. Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum dunn. Plant Mol Biol. 2020;104(3):327–337.
  • Larbat R, Hehn A, Hans J, et al. Isolation and functional characterization of CYP71AJ4 encoding for the first P450 monooxygenase of angular furanocoumarin biosynthesis. J Biol Chem. 2009;284(8):4776–4785.
  • Qin L, Liu WZ. Accumulation and histological localizations of furanocoumarins in Psoralea corylifolia. J Wuhan Botanical Res. 2007;25:360–365.
  • Rajniak J, Giehl RFH, Chang E, et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat Chem Biol. 2018;14(5):442–450.
  • Rafaliya RV, Sakure AA, Parekh MJ, et al . Study of dynamics of genes involved in biosynthesis and accumulation of scopoletin at different growth stages of Convolvulus prostratus Forssk. Phytochemistry. 2021;182:112594.
  • Pang L, Wu Y, Pan Y, et al. Insights into exogenous melatonin associated with phenylalanine metabolism in postharvest strawberry. Postharvest Biol Technol. 2020;168:111244.
  • Miao L, Zhang Y, Yang X, et al . Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × Ananassa) fruit. Food Chem. 2016;207:93–100.
  • Kota P, Guo D, Zubieta C, et al. O-Methylation of benzaldehyde derivatives by "lignin specific" caffeic acid 3-O-methyltransferase. Phytochemistry. 2004;65(7):837–846.
  • Lu N, Ma W, Han D, et al. Genome-wide analysis of the catalpa bungei caffeic acid O-methyltransferase (COMT) gene family: identification and expression profiles in normal, tension, and opposite wood. PeerJ. 2019;7:e6520.
  • Stanjek V, Miksch M, Lueer P, et al. Biosynthesis of psoralen: mechanism of a cytochrome P450 catalyzed oxidative bond cleavage. Angew Chem Int Ed. 1999;38(3):400–402.