884
Views
3
CrossRef citations to date
0
Altmetric
Articles

Potential targets for evaluation of sugarcane yellow leaf virus resistance in sugarcane cultivars: in silico sugarcane miRNA and target network prediction

, , , , , & show all
Pages 1980-1991 | Received 16 Sep 2021, Accepted 08 Feb 2022, Published online: 04 Mar 2022

References

  • D’Arcy C, Domier L. Family Luteoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Virus Taxonomy. VIIIth Report of International Committee on Taxonomy of Viruses; 2005. London: Elsevier/Academic Press.
  • Mangwende T, Wang M-L, Borth W, et al. The P0 gene of sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities. Virology. 2009;384(1):38–50.
  • Schenck S. Yellow leaf syndrome–a new disease of sugarcane. Report of HSPA Experiment Station, 1990. p. 98.
  • Rott P, Mirkov TE, Schenck S, et al. Recent advances in research on sugarcane yellow leaf virus, the causal agent of sugarcane yellow leaf. Tunbridge Wells, UK: Sugar Cane International; 2008;26:18–27.
  • Holkar SK, Balasubramaniam P, Kumar A, et al. Present status and future management strategies for sugarcane yellow leaf virus: a major constraint to the global sugarcane production. Plant Pathol J. 2020;36(6):536–557.
  • Guohui Z, Junguang L, Donglin X, et al. Occurrence of sugarcane yellow leaf virus in South China and its transmission by the sugarcane–colonizing aphid, ceratovacuna lanigera. Zhongguo Nong ye ke xue = Zhongguo Nongye Kexue. 2006; 39(10):2023–2027.
  • Amata RL, Fernandez E, Filloux D, et al. Prevalence of sugarcane yellow leaf virus in sugarcane-producing regions in Kenya revealed by reverse-transcription loop-mediated isothermal amplification method. Plant Dis. 2016;100(2):260–268.
  • Comstock J, Irey M, Lockhart B, et al. Incidence of yellow leaf syndrome in CP cultivars based on polymerase chain reaction and serological techniques. Sugar Cane. 1998;4:21–24.
  • Xie Y, Wang M, Xu D, et al. Simultaneous detection and identification of four sugarcane viruses by one-step RT-PCR. J Virol Methods. 2009;162(1-2):64–68.
  • Schenck S, Hu J, Lockhart B. Use of a tissue blot immunoassay to determine the distribution of sugarcane yellowleaf virus in Hawaii. Sugar Cane (United Kingdom), 1997.
  • Madugula S, Gali U. Detection of sugarcane yellow leaf virus (SCYLV) causing yellow leaf disease (YLD) of sugarcane using serological and molecular tools. ICPJL. 2018;6(2):58–62.
  • Brennecke J, Stark A, Russell RB, et al . Principles of microRNA-target recognition. PLoS Biol. 2005;3(3):e85.
  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008;320(5880):1185–1190.
  • Baulcombe D. RNA silencing in plants. Nature. 2004; 431(7006) :356–363.
  • Li F, Pignatta D, Bendix D, et al. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A. 2012; 109(5):1790–1795.
  • Carbonell A, Kobayashi K, Nishiguchi M, et al.et al. Design, synthesis, and functional analysis of highly specific artificial small RNAs with antiviral activity in plants. in Antiviral resistance in plants. 2019. Humana, New York, NY: Springer; p. 231–246.
  • Duan C-G, Wang C-H, Fang R-X, et al. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol. 2008;82(22):11084–11095.
  • Niu Q-W, Lin S-S, Reyes JL, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol. 2006;24(11):1420–1428.
  • Ali I, Amin I, Briddon RW, et al. Artificial microRNA-mediated resistance against the monopartite begomovirus cotton leaf curl burewala virus. Virol J. 2013;10(1):231–238.
  • Petchthai U, Le Yee CS, Wong S-M. Resistance to CymMV and ORSV in artificial microRNA transgenic Nicotiana benthamiana plants. Sci Rep. 2018; 8(1) :1–8.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162.
  • John B, Enright AJ, Aravin A, et al. Human microRNA targets. PLoS Biol. 2004;2(11):e363.
  • Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–1217.
  • Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34(Web Server issue):W451–W454.
  • Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018;46(W1):W49–W54.
  • Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31(13):3429–3431.
  • Bernhart SH, Tafer H, Mückstein U, et al. Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol. 2006;1(1):3–10.
  • Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645.
  • Gandrud C. Reproducible research with R and R studio. 2013. CRC Press.
  • Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev. 2004;18(5):504–511.
  • Peterson SM, Thompson JA, Ufkin ML, et al. Common features of microRNA target prediction tools. Front Genet. 2014;5:23.
  • Ashraf F, Ashraf MA, Hu X, et al. A novel computational approach to the silencing of sugarcane bacilliform Guadeloupe a virus determines potential host-derived MicroRNAs in sugarcane (saccharum officinarum L.). PeerJ. 2020;8:e8359.
  • Gaafar YZA, Ziebell H. Novel targets for engineering physostegia chlorotic mottle and tomato brown rugose fruit virus-resistant tomatoes: in silico prediction of tomato microRNA targets. PeerJ. 2020;8:e10096.
  • Iqbal MS, Jabbar B, Sharif MN, et al. In silico MCMV silencing concludes potential host-derived miRNAs in maize. Front Plant Sci. 2017;8:372.
  • Gentile A, Dias LI, Mattos RS, et al. MicroRNAs and drought responses in sugarcane. Front Plant Sci. 2015; 6:58.
  • Zanca AS, Vicentini R, Ortiz-Morea FA, et al. Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane. BMC Plant Biol. 2010;10(1) :260–213.
  • Tavares EQ, De Souza AP, Romim GH, et al. The control of endopolygalacturonase expression by the sugarcane RAV transcription factor during aerenchyma formation. J Exp Bot. 2019;70(2):497–506.
  • Ashraf MA, Feng X, Hu X, et al. In silico identification of sugarcane (Saccharum officinarum L.) genome encoded microRNAs targeting sugarcane bacilliform virus. PLoS ONE 2022;17(1):e0261807.