818
Views
0
CrossRef citations to date
0
Altmetric
Articles

Identification of Cladosporium fulvum infection responsive genes in tomato through cDNA-AFLP

, , , , , , , & show all
Pages 620-630 | Received 10 Apr 2022, Accepted 21 Aug 2022, Published online: 08 Sep 2022

References

  • Wang H, Shi Y, Wang D, et al. A biocontrol strain of Bacillus subtilis WXCDD105 used to control tomato Botrytis cinerea and Cladosporium fulvum cooke and promote the growth of seedlings. IJMS. 2018;19(5):1371.
  • Thomma BPHJ, VAN Esse HP, Crous PW, et al. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic mycosphaerellaceae. Mol Plant Pathol. 2005;6(4):379–393.
  • Stergiopoulos I, de Wit PJ. Fungal effector proteins. Annu Rev Phytopathol. 2009;47:233–263.
  • Yoshida K, Asano S, Sushida H, et al. Occurrence of tomato leaf mold caused by novel race 2.4.9 of Cladosporium fulvum in Japan. J Gen Plant Pathol. 2021;87(1):35–38.
  • Xue D-Q, Chen X-L, Zhang H, et al. Transcriptome analysis of the Cf-12-mediated resistance response to Cladosporium fulvum in tomato. Front Plant Sci. 2016;7:2012.
  • Zhao T, Liu G, Li S, et al. Differentially expressed gene transcripts related to the Cf-19-mediated resistance response to Cladosporium fulvum infection in tomato. Physiol Mol Plant Pathol. 2015;89(Complete):8–15.
  • Banikamali M, Soltanloo H, Ramezanpour SS, et al. Identification of salinity responsive genes in lavender through cDNA-AFLP. Biotechnol Rep (Amst). 2020;28:e00520–e00520.
  • Bachem CW, van der Hoeven RS, de Bruijn SM, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 1996;9(5):745–753.
  • Akihiro T, Umezawa T, Ueki C, et al. Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Lett. 2006;580(25):5947–5952.
  • Vuylsteke M, Peleman JD, van Eijk MJ. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc. 2007;2(6):1399–1413.
  • Durrant WE, Rowland O, Piedras P, et al. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell. 2000;12(6):963–977.
  • Dubos C, Plomion C. Identification of water-deficit responsive genes in Maritime pine (Pinus pinaster ait.) roots. Plant Mol Biol. 2003;51(2):249–262.
  • Wang X, Tang C, Zhang G, et al. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. Tritici. BMC Genomics. 2009;10:289.
  • Kaur G, Singh HP, Batish DR, et al. Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS One. 2015;10(9):e0138713.
  • Abbas M, Imran F, Iqbal Khan R, et al. Gibberellic acid induced changes on growth, yield, superoxide dismutase, catalase and peroxidase in fruits of bitter gourd (Momordica charantia L.). Horticulturae. 2020;6(4):72.
  • Klapheck S, Zimmer I, Cosse H. Scavenging of hydrogen peroxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant Cell Physiol. 1990;31(7):1005–1013.
  • Giannopolitis CN, Ries SK. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977;59(2):309–314.
  • Shevyakova N, Bakulina EA, Kuznetsov V. Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russ J Plant Physiol. 2009;56(5):663–669.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Ngadze E, Icishahayo D, Coutinho TA, et al. Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Dis. 2012;96(2):186–192.
  • Buranasompob A, Tang J, Powers JR, et al. Lipoxygenase activity in walnuts and almonds. LWT - Food Sci Technol. 2007;40(5):893–899.
  • Llugany M, Martin SR, Barceló J, et al. Endogenous jasmonic and salicylic acids levels in the cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant Cell Rep. 2013;32(8):1243–1249.
  • Ke L, Luo B, Zhang L, et al. Differential transcript profiling alters regulatory gene expression during the development of Gossypium arboreum, G.stocksii and somatic hybrids. Sci Rep. 2017;7(1):3120–3120.
  • Zhang D, Xie L, Xu X. cDNA-AFLP analysis of salicylic acid- and calcium chloride-induced transcript derived fragments under drought in tomato (Solanum lycopersicum). Biotechnol Biotechnol Equip. 2020;34(1):587–594.
  • de Wit PJGM. Cladosporium fulvum effectors: weapons in the arms race with tomato. Annu Rev Phytopathol. 2016;54(1):1–23.
  • Kerr EA, Bailey DL. Breeding for resistance to Cladosporium fulvum in tomato. Acta Hortic. 1966;(4):145–148. (In Belgium)
  • Liu G, Liu J, Zhang C, et al. Physiological and RNA-seq analyses provide insights into the response mechanism of the Cf-10-mediated resistance to Cladosporium fulvum infection in tomato. Plant Mol Biol. 2018;96(4–5):403–416.
  • Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 2002;128(4):1271–1281.
  • Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol. 1999;57(3):231–245.
  • Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255–266.
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438–360438.
  • Trivedi VD, Jangir PK, Sharma R, et al. Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp. Sci Rep. 2016;6:38430–38430.
  • Wei J, Zhang Z, Zhang P, et al. Regulation of ethylene biosynthesis and signal transduction by nitric oxide leading to resistance against Alternaria alternata in Hami melon. J Sci Food Agric. 2022;102(9):3535–3542.
  • Bolt S, Zuther E, Zintl S, et al. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ. 2017;40(1):108–120.
  • Bahieldin A, Atef A, Edris S, et al. Multifunctional activities of ERF109 as affected by salt stress in Arabidopsis. Sci Rep. 2018;8(1):6403.
  • Yang C, Lu X, Ma B, et al. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant. 2015;8(4):495–505.
  • Liu M, Pirrello J, Chervin C, et al. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol. 2015;169(4):2380–2390.
  • Zhang H, Huang Z, Xie B, et al. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta. 2004;220(2):262–270.
  • Hu Y, Zhao L, Chong K, et al. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. J Plant Physiol. 2008;165(16):1717–1725.
  • Sun X, Zhao T, Gan S, et al. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Sci Rep. 2016;6:24066.
  • Wang M, Dai W, Du J, et al. ERF109 of trifoliate orange (Poncirus trifoliata (L.) raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process. Plant Biotechnol J. 2019;17(7):1316–1332.
  • Xia D. The functional of thioredoxin genes in Arabidopsis thaliana under environmental stress. Beijing: Northeast Forestry University; 2007.