738
Views
0
CrossRef citations to date
0
Altmetric
Articles

AcdS gene of Bacillus cereus enhances salt tolerance of seedlings in tobacco (Nicotiana tabacum L.)

, , , , &
Pages 902-913 | Received 10 Apr 2022, Accepted 31 Oct 2022, Published online: 14 Nov 2022

References

  • Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169(1):30–39.
  • Glick BR, Cheng ZY, Czarny J, et al. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol. 2007;119(3):329–339.
  • Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci. 2004;86(3):407–421.
  • Liu XQ, Liu CY, Guo Q, et al. Mulberry transcription factor MnDREB4A confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One. 2015;10(12):e0145619.
  • Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218(1):1–14.
  • Dunwell JM. Transgenic approaches to crop improvement. J Exp Bot. 2000;51(suppl_1):487–496.
  • Oh SJ, Song SI, Kim YS, et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005;138(1):341–351.
  • Zhang PY, Yuan Z, Wei L, et al. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Sci. 2022;314:111127.
  • Sun H, Sun X, Wang H, et al. Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas. 2020;157(1):5.
  • Li J, Chen C, Wei J, et al. SpPKE1, a multiple stress-responsive gene confers salt tolerance in tomato and tobacco. IJMS. 2019;20(10):2478.
  • Park HJ, Kim WY, Yun DJ. A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance. Plant Signal Behav. 2013;8(7):e24820.
  • Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant. Physiol. 1984;35(1):155–189.
  • Yu J, Niu L, Yu J, et al. The involvement of ethylene in calcium-induced adventitious root formation in cucumber under salt stress. IJMS. 2019;20(5):1047.
  • Muller M, Munne-Bosch S. Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol. 2015;169(1):32–41.
  • Alonso JM, Hirayama T, Roman G, et al. EIN2, a bifunctional transducer of ethylene and stress responses in arabidopsis. Science. 1999;284(5423):2148–2152.
  • Freitas VS, Miranda R, Costa JH, et al. Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ Exp Bot. 2018;145:75–86.
  • Xu L, Xiang G, Sun Q, et al. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic Res. 2019;6:114.
  • Tao JJ, Chen HW, Ma B, et al. The role of ethylene in plants under salinity stress. Front Plant Sci. 2015;6:1059.
  • Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot. 2009;60(12):3311–3336.
  • Orozco-Mosqueda MDC, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res. 2020;235:126439.
  • Robison MM, Griffith M, Pauls KP, et al. Dual role for ethylene in susceptibility of tomato to Verticillium wilt. J Phytopathol. 2001;149(7-8):385–388.
  • Hackett RM, Ho CW, Lin ZF, et al. Antisense inhibition of the Nr gene restores normal ripening to the tomato never-ripe mutant, consistent with the ethylene receptor-inhibition model. Plant Physiol. 2000;124(3):1079–1086.
  • Stearns JC, Glick BR. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv. 2003;21(3):193–210.
  • Orozco-Mosqueda MD, Duan J, Dibernardo M, et al. The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol. 2019;10:1392.
  • Misra S, Chauhan PS. ACC deaminase-producing rhizosphere competent bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech. 2020;10(3):119.
  • Tak HI, Ahmad F, Babalola OO. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol. 2013;223:33–52.
  • Belimov AA, Safronova VI, Sergeyeva TA, et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol. 2001;47(7):642–652.
  • Sergeeva E, Shah S, Glick BR. Growth of transgenic canola (brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol. 2006;22(3):277–282.
  • Liu CH, Siew WY, Hung YT, et al. 1-Aminocyclopropane-1-carboxylate (ACC) deaminase gene in Pseudomonas azotoformans is associated with the amelioration of salinity stress in tomato. J Agric Food Chem. 2021;69(3):913–921.
  • Barnawal D, Pandey SS, Bharti N, et al. ACC deaminase-containing plant growth-promoting rhizobacteria protect papaver somniferum from downy mildew. J Appl Microbiol. 2017;122(5):1286–1298.
  • Naing AH, Maung TT, Chang KK. The ACC deaminase-producing plant growth promoting bacteria (PGPB): influences of bacterial strains and ACC deaminase activities in plant tolerance to abiotic stress. Physiol Plant. 2021;173(4):1992–2012.
  • Ahangarzadeh S, Daneshvar MH, Rajabi-Memari H, et al. Cloning, transformation and expression of human interferon alpha2b gene in tobacco plant (Nicotiana tabacum cv. xanthi). Jundishapur J Nat Pharm Prod. 2012;7(3):111–116.
  • Zhou SG, Cheng X, Li FF, et al. Overexpression of SlOFP20 in tomato affects plant growth, chlorophyll accumulation, and leaf senescence. Front Plant Sci. 2019;10:1510.
  • Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971;44(1):276–287.
  • He MT, Tian ZY, Liu QQ, et al. Trichoderma asperellum promotes cadmium accumulation within maize seedlings. Biotechnol Biotechnol Equip. 2021;35(1):1546–1559.
  • Wu ZZ, Yang JY, Zhang YX, et al. Growth responses, accumulation, translocation and distribution of vanadium in tobacco and its potential in phytoremediation. Ecotoxicol Environ Saf. 2021;207:111297.
  • Kukla M, Płociniczak T, Piotrowska-Seget Z. Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere. 2014;117:40–46.
  • Hosseinifard M, Stefaniak S, Ghorbani Javid M, et al. Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. IJMS. 2022;23(9):5186.
  • Cao B, Shu L, Li A. Functional characterization of LkERF-B2 for improved salt tolerance ability in Arabidopsis thaliana. 3 Biotech. 2019;9(7):263.
  • Nadarajah KK. ROS homeostasis in abiotic stress tolerance in plants. IJMS. 2020;21(15):5208.
  • Hossain MA, Bhattacharjee S, Armin SM, et al. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci. 2015;6:420.
  • Huang H, Ullah F, Zhou DX, et al. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 2019;10:800.
  • Gechev TS, Van Breusegem F, Stone JM, et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 2006;28(11):1091–1101.
  • Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–19.
  • Parvin K, Hasanuzzaman M, Bhuyan M, et al. Comparative physiological and biochemical changes in tomato (Solanum lycopersicum L.) under salt stress and recovery: role of antioxidant defense and glyoxalase systems. Antioxidants. 2019;8(9):350.
  • Du YT, Zhao MJ, Wang CT, et al. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol. 2018;18(1):320.
  • Li J, Xu H, Liu W, et al. Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 2015;168(4):1777–1791.
  • Ribeiro RP, Costa LC, Medina EF, et al. Ethylene coordinates seed germination behavior in response to low soil pH in stylosanthes humilis. Plant Soil. 2018;425(1–2):87–100.
  • Bleecker AB, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 2000;16:1–18.
  • Khan AL, Halo BA, Elyassi A, et al. Indole acetic acid and acc deaminase from endophytic bacteria improves the growth of solanum lycopersicum. Electron. J. Biotechnol. 2016;21:58–64.
  • Singh RP, Shelke GM, Anil K, et al. Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Front Microbiol. 2015;6:937.
  • Ali S, Khan MA, Kim WC. Pseudomonas veronii KJ mitigates flood stress-associated damage in Sesamum indicum L. Appl Biol Chem. 2018;61(5):575–585.
  • Fernandez-Llamosas H, Ibero J, Thijs S, et al. Enhancing the rice seedlings growth promotion abilities of Azoarcus sp. CIB by heterologous expression of ACC deaminase to improve performance of plants exposed to cadmium stress. Microorganisms. 2020;8(9):1453.
  • Peng J, Wu D, Liang Y, et al. Disruption of acdS gene reduces plant growth promotion activity and maize saline stress resistance by Rahnella aquatilis HX2. J Basic Microbiol. 2019;59(4):402–411.
  • Naing AH, Jeong HY, Jung SK, et al. Overexpression of 1-Aminocyclopropane-1-Carboxylic acid deaminase (acdS) gene in Petunia hybrida improves tolerance to abiotic stresses. Front Plant Sci. 2021;12:737490.
  • Kacprzyk J, Burke R, Schwarze J, et al. Plant programmed cell death meets auxin signalling. Febs J. 2022;289(7):1731–1745.