1,341
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Antiviral activity of Humulus lupulus (HOP) aqueous extract against MERS-CoV and SARS-CoV-2: in-vitro and in-silico study

, , , , , , , ORCID Icon, ORCID Icon & show all
Pages 167-179 | Received 25 Jul 2022, Accepted 09 Dec 2022, Published online: 23 Feb 2023

References

  • Schwartz DA. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med. 2020;144(7):799–805.
  • de Groot RJ, Baker SC, Baric RS, et al. Middle east respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol. 2013;87(14):7790–7792.
  • World Health Organization. Disease Outbreak News; Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia. 2022. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON422.
  • KDCA. Middle East Respiratory Syndrome (MERS). Policy & Services 2018. 2018. Available from: https://www.kdca.go.kr/contents.es?mid=a30329000000.
  • Diamond MS, Kanneganti T-D. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 2022;23(2):165–176.
  • Banik G, Khandaker G, Rashid H. Middle east respiratory syndrome coronavirus “MERS-CoV”: current knowledge gaps. Paediatr Respir Rev. 2015;16(3):197–202.
  • Jansen J, Reimer KC, Nagai JS, COVID Moonshot consortium, et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell. 2022;29(2):217–231.e8.
  • Song E, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. bioRxiv. 2020.
  • Gavriatopoulou M, Korompoki E, Fotiou D, et al. Organ-specific manifestations of COVID-19 infection. Clin Exp Med. 2020;20(4):493–506.
  • Stevens P. Angiosperm phylogeny website. 2001. Available at: http://www.mobot.org/MOBOT/research/APweb
  • Di Sotto A, Checconi P, Celestino I, et al. Antiviral and antioxidant activity of a hydroalcoholic extract from Humulus lupulus. Oxid Med Cell Longev. 2018;2018:5919237.
  • Abiko Y, Paudel D, Uehara O. HOPs components and oral health. J Funct Foods. 2022;92:105035.
  • Blaxland J, Thomas R, Baillie L. The antibacterial effect of Humulus lupulus (HOPs) against Mycobacterium bovis BCG: a promising alternative in the fight against bovine tuberculosis? Beverages. 2022;8(3):43.
  • Di Lodovico S, Menghini L, Ferrante C, et al. Hop extract: an efficacious antimicrobial and anti-biofilm agent against multidrug-resistant Staphylococci strains and Cutibacterium acnes. Front Microbiol. 2020;11:1852.
  • Bocquet L, Rivière C, Neut C, et al. Antimicrobial properties of phenolic compounds from hops, Humulus lupulus L.: fight against multidrug resistance. Planta Med. 2016;81(S 01):S1–S381.
  • Bocquet L, Sahpaz S, Bonneau N, et al. Phenolic compounds from Humulus lupulus as natural antimicrobial products: new weapons in the fight against methicillin resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei strains. Molecules. 2019;24(6):1024.
  • Seyedpour S, Khodaei B, Loghman AH, et al. Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: a systematic review of in vitro and in vivo studies. J Cell Physiol. 2021;236(4):2364–2392.
  • Perera RA, Wang P, Gomaa MR, et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill. 2013;18(36):pii = 20574.
  • Kandeil A, Mostafa A, El-Shesheny R, et al. Coding-Complete genome sequences of two SARS-CoV-2 isolates from Egypt. Microbiol Resour Announc. 2020;9(22):e00489-20.
  • GabAllah M, et al. Antiviral activity of water extracts of some medicinal and nutritive plants from the Apiaceae family. Novel Res Microbiol J. 2020;4(2):725–735.
  • Kutkat O, Kandeil A, Moatasim Y, et al. In vitro and in vivo antiviral studies of new heteroannulated 1,2,3-Triazole glycosides targeting the neuraminidase of Influenza A viruses. Pharmaceuticals (Basel). 2022;15(3):351.
  • Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493–497.
  • Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016;2016(4):pdb.prot087379.
  • Mahmoud DB, Ismail WM, Moatasim Y, et al. Delineating a potent antiviral activity of Cuphea ignea extract loaded nano-formulation against SARS-CoV-2: in silico and in vitro studies. J Drug Deliv Sci Technol. 2021;66:102845.
  • Mostafa A, Kandeil A, A. M. M. Elshaier Y, et al. FDA-Approved drugs with potent in vitro antiviral activity against severe acute respiratory syndrome coronavirus 2. Pharmaceuticals. 2020;13(12):443.
  • Seliem IA, Girgis AS, Moatasim Y, et al. New pyrazine conjugates: synthesis, computational studies, and antiviral properties against SARS-CoV-2. ChemMedChem. 2021;16(22):3418–3427.
  • Kandeil A, Mostafa A, Kutkat O, et al. Bioactive polyphenolic compounds showing strong antiviral activities against severe acute respiratory syndrome coronavirus 2. Pathogens (Basel, Switzerland). 2021;10(6):758.
  • Tobita K. Permanent canine kidney (MDCK) cells for isolation and plaque assay of Influenza B viruses. Med Microbiol Immunol. 1975;162(1):23–27.
  • Janson G, Zhang C, Prado MG, et al. PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinformatics. 2017;33(3):444–446.
  • Kuo Y-C, Lin L-C, Tsai W-J, et al. Samarangenin B from Limonium sinense suppresses herpes simplex virus type 1 replication in vero cells by regulation of viral macromolecular synthesis. Antimicrob Agents Chemother. 2002;46(9):2854–2864.
  • Zhang J, Zhan B, Yao X, et al. Antiviral activity of tannin from the pericarp of Punica granatum L. against genital herpes virus in vitro. Zhongguo Zhong Yao Za Zhi. 1995;20(9):556–558, 576.
  • Schuhmacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. 2003;10(6-7):504–510.
  • Trott O, Olson AJ. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461.
  • Wang N, Shi X, Jiang L, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986–993.
  • Połeć K, Barnaś B, Kowalska M, et al. The influence of the essential oil extracted from HOPs on monolayers and bilayers imitating plant pathogen bacteria membranes. Colloids Surf B Biointerfaces. 2019;173:672–680.
  • Maietti A, Brighenti V, Bonetti G, et al. Metabolite profiling of flavonols and in vitro antioxidant activity of young shoots of wild Humulus lupulus L. (HOP). J Pharm Biomed Anal. 2017;142:28–34.
  • Ligor M, Stankevičius M, Wenda-Piesik A, et al. Comparative gas chromatographic–mass spectrometric evaluation of hop (Humulus lupulus L.) essential oils and extracts obtained using different sample preparation methods. Food Anal Methods. 2014;7(7):1433–1442.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717–42713.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev. 1997;23(1–3):3–25.
  • Banerjee P, Eckert AO, Schrey AK, et al. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucl Acids Res. 2018;46(W1):W257–W263.
  • Guijarro-Real C, Plazas M. Potential in vitro inhibition of selected plant extracts against SARS-CoV-2 chymotripsin-like protease (3CL(Pro)) activity. Foods. 2021;10(7):1503.
  • Lautié E, Russo O, Ducrot P, et al. Unraveling plant natural chemical diversity for drug discovery purposes. Front Pharmacol. 2020;11:397.
  • Rates SM. Plants as source of drugs. Toxicon. 2001;39(5):603–613.
  • Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012;3(4):200–201.
  • Chen L, Dou J, Su Z, et al. Synergistic activity of baicalein with ribavirin against influenza A (H1N1) virus infections in cell culture and in mice. Antiviral Res. 2011;91(3):314–320.
  • Ibrahim AK, Youssef AI, Arafa AS, et al. Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Nat Prod Res. 2013;27(22):2149–2153.
  • Lee J-H, Oh M, Seok J, et al. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses. 2016;8(6):157.
  • V. K P, Rath SP, Abraham P. Computational designing of a peptide that potentially blocks the entry of SARS-CoV, SARS-CoV-2 and MERS-CoV. PLoS One. 2021;16(5):e0251913.
  • Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894–904.e9.
  • Farouk A-E, Baig MH, Khan MI, et al. Screening of inhibitors against SARS-CoV-2 spike protein and their capability to block the viral entry mechanism: a viroinformatics study. Saudi J Biol Sci. 2021;28(6):3262–3269.