1,010
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genome-wide in silico and in vitro mining to develop a novel cyclotide-based marker system in plants

ORCID Icon, , &
Pages 213-225 | Received 24 Nov 2022, Accepted 31 Jan 2023, Published online: 22 Feb 2023

References

  • Jagadish K, Camarero JA. Recombinant expression of cyclotides using split inteins. Split inteins. New York (NY): Humana Press; 2017. p. 41–55.
  • Gran L. An oxytocic principle found in Oldenlandia affinis DC. Medd nor Farm Selsk. 1970;12(173):80.
  • Craik DJ, Daly NL, Bond T, et al. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol. 1999;294(5):1327–1336.
  • Park S, Yoo KO, Marcussen T, et al. Cyclotide evolution: insights from the analyses of their precursor sequences, structures and distribution in violets (Viola). Front Plant Sci. 2017;8:2058.
  • Weidmann J, Craik DJ. Discovery, structure, function, and applications of cyclotides: circular proteins from plants. J Exp Bot. 2016;67(16):4801–4812.
  • Ojeda PG, Cardoso MH, Franco OL. Pharmaceutical applications of cyclotides. Drug Discov Today. 2019;24(11):2152–2161.
  • Kaas Q, Craik DJ. Analysis and classification of circular proteins in CyBase. Pept Sci. 2010;94(5):584–591.
  • Craik DJ, Mylne JS, Daly NL. Cyclotides: macrocyclic peptides with applications in drug design and agriculture. Cell Mol Life Sci. 2010;67(1):9–16.
  • Craik DJ, Čemažar M, Wang CK, et al. The cyclotide family of circular miniproteins: nature’s combinatorial peptide template. Peptide Science: original Research on Biomolecules. 2006;84(3):250–266.
  • Pränting M, Lööv C, Burman R, et al. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother. 2010;65(9):1964–1971.
  • Ireland DC, Colgrave ML, Nguyencong P, et al. Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins. J Mol Biol. 2006;357(5):1522–1535.
  • Nguyen GKT, Lian Y, Pang EWH, et al. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J Biol Chem. 2013;288(5):3370–3380.
  • Ravipati AS, Henriques ST, Poth AG, et al. Lysine-rich cyclotides: a new subclass of circular knotted proteins from Violaceae. ACS Chem Biol. 2015;10(11):2491–2500.
  • Daly NL, Clark RJ, Plan MR, et al. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem J. 2006;393(Pt 3):619–626.
  • Hernandez JF, Gagnon J, Chiche L, et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry. 2000;39(19):5722–5730.
  • Colgrave ML, Craik DJ. Thermal, chemical, and enzymatic stability of the cyclotide Kalata B1: the importance of the cyclic cystine knot. Biochemistry. 2004;43(20):5965–5975.
  • Cao P, Yang Y, Uche FI, et al. Coupling plant-derived cyclotides to metal surfaces: an antibacterial and antibiofilm study. Int J Mol Sci. 2018;19(3):793.
  • Du Q, Huang YH, Wang CK, et al. Mutagenesis of bracelet cyclotide hyen D reveals functionally and structurally critical residues for membrane binding and cytotoxicity. J Biol Chem. 2022;298(4):101822.
  • Vilas Boas LCP, Campos ML, Berlanda R, et al. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci. 2019;76(18):3525–3542.
  • Strömstedt AA, Park S, Burman R, et al. Bactericidal activity of cyclotides where phosphatidylethanolamine-lipid selectivity determines antimicrobial spectra. Biochim Biophys Acta Biomembr. 2017;1859(10):1986–2000.
  • Gruber CW, O’Brien M. Uterotonic plants and their bioactive constituents. Planta Med. 2011;77(3):207–220.
  • Pinto MEF, Najas JZG, Magalhães LG, et al. Inhibition of breast cancer cell migration by cyclotides isolated from Pombalia calceolaria. J Nat Prod. 2018;81(5):1203–1208.,
  • Aboye TL, Ha H, Majumder S, et al. Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity. J Med Chem. 2012;55(23):10729–10734.
  • Gründemann C, Stenberg KG, Gruber CW. T20K: an immunomodulatory cyclotide on its way to the clinic. Int J Pept Res Ther. 2019;25(1):9–13.
  • Camarero JA, Campbell MJ. The potential of the cyclotide scaffold for drug development. Biomedicines. 2019;7(2):31.
  • Bobey AF, Pinto MEF, Cilli EM, et al. A cyclotide isolated from Noisettia orchidiflora (Violaceae). Planta Med. 2018;84(12-13):947–952.
  • Camarero JA. Rapid screening of cyclotide-based libraries for the selection of potent E3 ligase antagonists. Cancer Research. 2019;79(13_Supplement):4841–4841.
  • Kalmankar NV, Venkatesan R, Balaram P, et al. Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis. Sci Rep. 2020;10(1):1–20.
  • Rajendran S, Slazak B, Mohotti S, et al. Screening for cyclotides in Sri Lankan medicinal plants: discovery, characterization, and bioactivity screening of cyclotides from Geophila repens. J Nat Prod. 2023;86(1):52–65.
  • Rizwan Z, Aslam N, Zafar F, et al. Isolation of novel cyclotide encoding genes from some Solanaceae species and evolutionary link to other families. Pakistan Journal of Agricultural Sciences. 2021;58(1):169–177.
  • Khoshkam Z, Zarrabi M, Sepehrizadeh Z, et al. Reporting a transcript from Iranian Viola tricolor, which may encode a novel cyclotide-like precursor: molecular and in silico studies. Comput Biol Chem. 2020;84:107168.
  • Craik DJ, Malik U. Cyclotide biosynthesis. Curr Opin Chem Biol. 2013;17(4):546–554.
  • Deepshikha V, Rajasekharan PV. Synthesis and ­characterization of Kalata B2 cyclotide (GLPVCGETCFGGTCNTPGCSCTWPICTRD) on wang resin, as solid support. Open J Med Chem. 2020;10(2):46–55.
  • Kalmankar NV, Balaram P, Venkatesan R. Mass spectrometric analysis of cyclotides from Clitoria ternatea Xxx-Pro bond fragmentation as convenient diagnostic of pro residue positioning. Chemistry–An Asian Journal, 16(19), pp.2920-2931. lar and in silico Studies. Comput Biol Chem. 2021;84:107168.
  • Shams F, Kanwal N, Tariq S, et al. Cyclopeptide Kalata B12 as HCV-NS5A potent inhibitor. Pak BioMed J. 2022;5(5):267–271.
  • Gerlach SL, Göransson U, Kaas Q, et al. A systematic approach to document cyclotide distribution in plant species from genomic, transcriptomic, and peptidomic analysis. Pept Sci. 2013;100(5):433–437.
  • Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16(6):276–277.
  • Kalendar R. A guide to using FASTPCR software for PCR, in silico PCR, and oligonucleotide analysis. PCR primer design. New York (NY): Humana; 2022. p. 223–243.
  • Zhang J, Hua Z, Huang Z, et al. Two blast-independent tools, CyPerl and CyExcel, for harvesting hundreds of novel cyclotides and analogues from plant genomes and protein databases. Planta. 2015;241(4):929–940.
  • Mauri M, Elli T, Caviglia G, et al. 2017. RAWGraphs: a visualisation platform to create open outputs. Proceedings of the 12th Biannual Conference on Italian SIGCHI chapter. p. 1–5.
  • Hammer Ø, Harper DAT, Ryan PD. Past: paleontological statistics software package for education and data analysis. Palaeontol Electronica. 2001;4(1):4–9.
  • Jaccard P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat. 1901;37:547–579.
  • Atia MAM, El-Moneim DA, Abdelmoneim TK, et al. Evaluation of genetic variability and relatedness among eight Centaurea species through CAAT-box derived polymorphism (CBDP) and start codon targeted polymorphism (SCoT) markers. Biotechnol Biotechnol Equip. 2021;35(1):1230–1237.
  • Tyler KD, Wang G, Tyler SD, et al. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J Clin Microbiol. 1997;35(2):339–346.
  • Jennings C, West J, Waine C, et al. Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci. 2001;98(19):10614–10619.
  • Qin Q, McCallum EJ, Kaas Q, et al. Identification of candidates for cyclotide biosynthesis and cyclisation by expressed sequence tag analysis of Oldenlandia affinis. BMC Genomics. 2010;11(1):1–11.
  • Bahramnejad B, Kodari N, Rostamzadeh J, et al. Molecular cloning and characterization of a cyclotide gene family in Viola modesta Fenzl. J Agric Sci Technol. 2015;17(6):1637–1649.
  • Simonsen SM, Sando L, Ireland DC, et al. A continent of plant defense peptide diversity: cyclotides in Australian Hybanthus (Violaceae). Plant Cell. 2005;17(11):3176–3189.
  • Mulvenna JP, Mylne JS, Bharathi R, et al. Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins? Plant Cell. 2006;18(9):2134–2144.
  • Muratspahić E, Tomašević N, Nasrollahi-Shirazi S, et al. Plant-derived cyclotides modulate κ-opioid receptor signaling. J Nat Prod. 2021;84(8):2238–2248.,
  • Sternberger AL, Bowman MJ, Kruse CP, et al. Transcriptomics identifies modules of differentially expressed genes and novel cyclotides in Viola pubescens. Front Plant Sci. 2019;10:156.
  • Etminan A, Pour-Aboughadareh A, Mohammadi R, et al. Applicability of CAAT box-derived polymorphism (CBDP) markers for analysis of genetic diversity in durum wheat. Cereal Res Commun. 2018;46(1):1–9.
  • Patidar A, Sharma R, Kotu GK, et al. SCoT markers assisted evaluation of genetic diversity in new plant type (NPT) lines of rice. Bangladesh Journal of Botany. 2022;51(2):335–341.
  • Dar AA, Mudigunda S, Mittal PK, et al. Comparative assessment of genetic diversity in Sesamum indicum L. using RAPD and SSR markers. 3 Biotech. 2017;7(1):1–12.
  • Negash TT, Tesfaye K, Wakeyo GK, et al. Genetic diversity, population structure analysis using ultra-high throughput diversity array technology (DArTseq) in different origin sesame (Sesamum indicum L.). 2020; DOI: 10.21203/rs.3.rs-103763/v1.
  • Mahmoud AF, Abd El-Fatah BES. Genetic diversity studies and identification of molecular and biochemical markers associated with fusarium wilt resistance in cultivated faba bean (Vicia faba). Plant Pathol J. 2020;36(1):11.
  • Mulugeta B, Tesfaye K, Keneni G, et al. Genetic diversity in spring faba bean (Vicia faba L.) genotypes as revealed by high-throughput KASP SNP markers. Genetic Resour Crop Evol. 2021;68(5):1971–1986.
  • Kizil S, Basak M, Guden B, et al. Genome-wide discovery of InDel markers in sesame (Sesamum indicum L.) using ddRADSeq. Plants. 2020;9(10):1262.