875
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Thermal deactivation studies of alpha-amylase immobilized onto core-shell structured aniline formaldehyde crosslinked polyaniline magnetic nanocomposite

, &
Pages 273-285 | Received 28 Nov 2022, Accepted 15 Feb 2023, Published online: 23 Feb 2023

References

  • Wu S, Snajdrova R, Moore JC, Baldenius K, & Bornscheuer UT. Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed. 2021 60:88–119.
  • Eş I, Vieira JDG, Amaral AC. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol. 2015;99:2065–2082.
  • Sheldon RA, Basso A, Brady D. New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chem Soc Rev. 2021;50:5850–5862.
  • Sanchez S, Demain AL. Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev. 2011;15:224–230.
  • Meghwanshi GK, Kaur N, Verma S, et al. Enzymes for pharmaceutical and therapeutic applications. Biotechnol Appl Biochem. 2020;67:586–601.
  • Shang X-F, Liu YQ, Guo X, et al. Application of sustainable natural resources in agriculture: acaricidal and enzyme inhibitory activities of naphthoquinones and their analogs against Psoroptes cuniculi. Sci Rep. 2018;8:1–9.
  • Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep. 2022;39:335–388.
  • Khan WS, Hamadneh NN, Khan WA. Polymer nanocomposites–synthesis techniques, classification and properties. In: Di Sia P, editor. Science and applications of tailored nanostructures. Manchester (UK): One Central Press (OCP); 2016. p. 50.
  • Mohammadi A, Jafari SM, Mahoonak AS, et al. Liposomal/nanoliposomal encapsulation of food-relevant enzymes and their application in the food industry. Food Bioprocess Technol. 2021;14:23–38.
  • Defaei M, Taheri-Kafrani A, Miroliaei M, et al. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: a robust nanobiocatalyst. Int J Biol Macromol. 2018;113:354–360.
  • Gubin SP. Magnetic nanoparticles. Weinheim: John Wiley & Sons; 2009.
  • Liu J, Qiao SZ, Hu QH, et al. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small. 2011;7:425–443.
  • Burke NAD, Stöver HDH, Dawson FP. Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles. Chem Mater. 2002;14:4752–4761.
  • Mushtaq A, Zhao R, Luo D, et al. Magnetic hydroxyapatite nanocomposites: the advances from synthesis to biomedical applications. Mater Des. 2021;197:109269.
  • Ashly PC, Joseph MJ, Mohanan PV. Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem. 2011;127:1808–1813.
  • Mardani T, Khiabani MS, Mokarram RR, et al. Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads. Int J Biol Macromol. 2018; 120(Pt A):354–360.
  • Raul D, Biswas T, Mukhopadhyay S, et al. Production and partial purification of alpha amylase from Bacillus subtilis (mtcc 121) using solid state fermentation. Biochem Res Int 2014;2014:1–5.
  • Sanjay G, Sugunan S. Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes. J Porous Mater. 2008;15:359–367.
  • Sanjay G, Sugunan S. Glucoamylase immobilized on montmorillonite: influence of nature of binding on surface properties of clay-support and activity of enzyme. J Porous Mater. 2007;14:127–136.
  • Khan MJ, Husain Q, Ansari SA. Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase. Appl Microbiol Biotechnol. 2013;97:1513–1522.
  • Antony N, Mohanan PV. Template synthesized polypyrroles as a carrier for diastase alpha amylase immobilization. Biocatal. Agric. Biotechnol. 2019;19:101164.
  • Atiroğlu V, Atiroğlu A, Özacar M. Immobilization of α-amylase enzyme on a protein @metal–organic framework nanocomposite: a new strategy to develop the reusability and stability of the enzyme. Food Chem. 2021;349:129127.
  • Mukherjee AK, Kumar TS, Rai SK, et al. Statistical optimization of Bacillus alcalophilus α-amylase immobilization on iron-oxide magnetic nanoparticles. Biotechnol Bioproc E. 2010;15:984–992.
  • Radovanović M, Jugović B, Gvozdenović M, et al. Immobilization of α-amylase via adsorption on magnetic particles coated with polyaniline. Starch/Staerke. 2016;68:427–435.
  • Belaabed B, Wojkiewicz JL, Lamouri S, et al. Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties. J. Alloys Compd. 2012;527:137–144.
  • Wan M, Fan J. Synthesis and ferromagnetic properties of composites of a water‐soluble polyaniline copolymer containing iron oxide. J Polym Sci A Polym Chem. 1998;36:2749–2755.
  • Wan M, Li J. Synthesis and electrical–magnetic properties of polyaniline composites. J Polym Sci A Polym Chem. 1998;36:2799–2805.
  • Rana S, Jadhav NV, Barick KC, et al. Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cell. Dalton Trans. 2014;43:12263–12271.
  • Panahi A, Zadeh S. Nickel adsorption from environmental samples by ion imprinted aniline -formaldehyde polymer. Iran J Chem Chem Eng. 31:35–44. 2012;
  • Deng J, He CLan, Peng Y, et al. Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure. Synth Met. 2003;139:295–301.
  • Augustine MGPV, Mohanan G. Aniline formaldehyde cross linked polyaniline magnetic nanocomposite cross shell strucure: synthesis and characterisation. In Proceedings on National Seminar on Sustainable Innovations in Functional Materials: Developments and Applications, Department of Physics, Chemistry and Biotechnology, Al Ameen College in collaboration with Indian Science Congress Association, Cochin Chapter; 20th and 21st July 2022. p. 45–51..
  • Bindu VU, Mohanan PV. Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: a kinetic and thermodynamic study. Carbohydr Res. 2020;498:108185.
  • Fuwa H. A new method for microdetermination of amylase activity by the use of amylose as the substrate. J Biochem. 1954;41:583–603.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin-phenol reagent. J Biol Chem. 1951;193:265–275.
  • Ahmed SA, Saleh SAA, Abdel-Hameed SAM, et al. Catalytic, kinetic and thermodynamic properties of free and immobilized caseinase on mica glass-ceramics. Heliyon. 2019;5:e01674.
  • Singh KA, Chhatpar HS. Purification and characterization of chitinase from paenibacillus sp. D1. Appl Biochem Biotechnol. 2011;164:77–88.
  • Daoud L, Hmani H, Ben Ali M, et al. An original halo-alkaline protease from Bacillus halodurans strain US193: biochemical characterization and potential use as bio-additive in detergents. J Polym Environ. 2018;26:23–32.
  • Ahmed SA, Mostafa FA, Ouis MA. Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support. Int J Biol Macromol. 2018;112:371–382.
  • Abdel-Naby MA, Ahmed SA, Wehaidy HR, et al. Catalytic, kinetic and thermodynamic properties of stabilized Bacillus stearothermophilus alkaline protease. Int J Biol Macromol. 96:265–271. 2017;
  • Silva RN, Asquieri ER, Fernandes KF. Immobilization of Aspergillus Niger glucoamylase onto a polyaniline polymer. Process Biochem. 2005;40:1155–1159.
  • Bayramoglu G, Altintas B, Yakup Arica M. Immobilization of glucoamylase onto polyaniline-grafted magnetic hydrogel via adsorption and adsorption/cross-linking. Appl Microbiol Biotechnol. 2013;97:1149–1159.
  • Dixon M, Webb EC, Thorne CJR, et al. Enzymes. New York: academic Press; 1979. p. 332–354.
  • Toscano G, Pirozzi D, Maremonti M, et al. Kinetics of enzyme deactivation: a case study. Catal. Today. 1994;22:489–510.
  • Prakash O, Jaiswal N. α, Amylase An ideal representative of thermostable enzymes. Appl Biochem Biotechnol. 2010;160:2401–2414.
  • Savitha DP, Vadakethil Unniganapathi B, Geetha G, et al. Improvement in the properties of α-amylase enzyme by immobilization using metal oxide nanocomposites as carriers. Adv. Nanomed. Nanotechnol. Res. 2020;2:77–88.
  • Ghosh S, Chaganti SR, Prakasham RS. Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase. J Mol Catal B Enzym. 2012;74:132–137.
  • Abdel-Naby MA, Hashem AM, Esawy MA, et al. Immobilization of Bacillus subtilis α-amylase and characterization of its enzymatic properties. Microbiol Res. 1999;153:319–325.
  • Karam EA, Abdel Wahab WA, Saleh SAA, et al. Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int J Biol Macromol. 2017;102:694–703.
  • Ghosh P, Das A, Gayen S, et al. Statistical optimization of α-amylase production from penicillium notatum NCIM 923 and kinetics study of the purified enzyme. Acta Biol Szegediensis. 2015;59:179–188.
  • Altinok H, Aksoy S, Tümtürk H, et al. Covalent immobilization of invertase on chemically activated poly (styrene-2-hydroxyethyl methacrylate) microbeads. J Food Biochemistry. 2008;32:299–315.
  • Shojaei F, Homaei A, Taherizadeh MR, et al. Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst. Int J Food Prop. 2017;20:1–11.
  • Molina-Fernández C, Luis P. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: a review. J. CO2 Util. 2021;47:101475.
  • Tavares APM, Silva CG, Dražić G, et al. Laccase immobilization over multi-walled carbon nanotubes: kinetic, thermodynamic and stability studies. J Colloid Interface Sci. 2015;454:52–60.
  • Ahmed SA, Abdella MAA, El-Sherbiny GM, et al. Catalytic, kinetic and thermal properties of free andimmobilized Bacillus subtilis -MK1 α-amylase on chitosan-magnetic nanoparticles. Biotechnol Rep (Amst)). 2020;26:e00443.
  • Marangoni AG. Enzyme kinetics: a modern approach. John Wiley & Sons; 2003. ISBN 0471461415
  • Zaboli M, Raissi H, Zaboli M, et al. Stabilization of d-lactate dehydrogenase diagnostic enzyme via immobilization on pristine and carboxyl-functionalized carbon nanotubes, a combined experimental and molecular dynamics simulation study. Arch Biochem Biophys. 2019;661:178–186.
  • Gohel SD, Singh SP. Purification strategies, characteristics and thermodynamic analysis of a highly thermostable alkaline protease from a salt-tolerant alkaliphilic actinomycete, Nocardiopsis Alba OK-5. J. Chromatogr. B. 2012;889-890:61–68.
  • Pereira EB, De Castro HF, De Moraes FF, et al. Kinetic studies of lipase from Candida rugosa. Twenty-Second Symp Biotechnol Fuels Chem. 2001;91:739–752.
  • Wehaidy HR, Abdel-Naby MA, Shousha WG, et al. Improving the catalytic, kinetic and thermodynamic properties of Bacillus subtilis KU710517 milk clotting enzyme via conjugation with polyethylene glycol. Int J Biol Macromol. 2018;111:296–301.
  • Fernandez–Lafuente R, Guisan JM, Ali S, et al. Immobilization of functionally unstable catechol-2, 3-dioxygenase greatly improves operational stability. Enzyme Microb. Technol. 2000;26:568–573.