1,135
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanodiamonds improve amaranth biodegradation in a lab-scale biofilter

, &
Pages 317-328 | Received 23 Dec 2022, Accepted 10 Mar 2023, Published online: 31 Mar 2023

References

  • Ho DN. Applications in biology and nanoscale medicine. Springer US. 2010;10:978–971.
  • Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamond. Nanotechnology. 2017;28(25):252001.
  • Liu KK, Cheng CL, Chang CC, et al. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology. 2007;18(32):325102.
  • Moore L, Grobárová V, Shen H, et al. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds. Nanoscale. 2014;6(20):11712–11721.
  • Yu SJ, Kang MW, Chang HC, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127(50):17604–17605.
  • Arnault JC, Girard HA. Hydrogenated nanodiamonds: synthesis and surface properties. Curr Opin Solid State Mater Sci. 2017;21(1):10–16.
  • Betz P, Krueger A. Surface modification of nanodiamond under Bingel–Hirsch conditions. ChemPhysChem. 2012;13(10):2578–2584.
  • Fessele C, Wachtler S, Chandrasekaran V, et al. Thiourea-bridged nanodiamond glycoconjugates as inhibitors of bacterial adhesion. Eur J Org Chem. 2015;2015(25):5519–5525.
  • Jarre G, Heyer S, Memmel E, et al. Synthesis of nanodiamond derivatives carrying amino functions and quantification by a modified Kaiser test. Beilstein J Org Chem. 2014;10(1):2729–2737.
  • Jarre G, Liang Y, Betz P, et al. Playing the surface game—Diels–Alder reactions on diamond nanoparticles. Chem Commun. 2011;47(1):544–546.
  • Liang Y, Meinhardt T, Jarre G, et al. Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci. 2011;354(1):23–30.
  • Petit T, Arnault JC, Girard HA, et al. Oxygen hole doping of nanodiamond. Nanoscale. 2012;4(21):6792–6799.
  • Shenderova OA, Zhirnov VV, Brenner DW. Carbon nanostructures. Crit Rev Solid State Mater Sci. 2002;27(3-4):227–356.
  • Aleksenskii AE, Baidakova MV, Vul AY, et al. The structure of diamond nanoclusters. Phys Solid State. 1999;41(4):668–671.
  • Kovalenko I, Bucknall DG, Yushin G. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv Funct Mater. 2010;20(22):3979–3986.
  • Krueger A, Stegk J, Liang Y, et al. Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir. 2008;24(8):4200–4204.
  • Yeap WS, Tan YY, Loh KP. Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem. 2008;80(12):4659–4665.
  • Boudou JP, Curmi PA, Jelezko F, et al. High yield fabrication of fluorescent nanodiamonds. Nanotechnology. 2009;20(23):235602.
  • Amans D, Chenus AC, Ledoux G, et al. Nanodiamond synthesis by pulsed laser ablation in liquids. Diamond Relat Mater. 2009;18(2-3):177–180.
  • Wang CX, Yang YH, Yang GW. Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid. J. Appl. Phys. 2005;97(6):066104.
  • Gottlieb S, Wöhrl N, Schulz S, et al. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper. Springerplus. 2016;5(1):1–16.
  • Yamada T, Ishihara M, Kim J, et al. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon. 2012;50(7):2615–2619.
  • Dunlop A, Jaskierowicz G, Ossi PM, et al. Transformation of graphite into nanodiamond following extreme electronic excitations. Phys Rev B. 2007;76(15):155403.
  • Al-Tamimi BH, Jabbar II, Al-Tamimi HM. Synthesis and characterization of nanocrystalline diamond from graphite flakes via a cavitation-promoted process. Heliyon. 2019;5(5):e01682.
  • Khachatryan AK, Aloyan SG, May PW, et al. Graphite-to-diamond transformation induced by ultrasound cavitation. Diamond Relat Mater. 2008;17(6):931–936.
  • Iyer JK, Dickey A, Rouhani P, et al. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS ONE. 2018;13(1):e0191020.
  • Lee DK, Kee T, Liang Z, et al. Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci USA. 2017;114(45):E9445–E9454.
  • Liu KK, Zheng WW, Wang CC, et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21(31):315106.
  • Mogilnaya OA, Puzyr AP, Baron AV, et al. Hematological parameters and the state of liver cells of rats after oral administration of aflatoxin B1 alone and together with nanodiamonds. Nanoscale Res Lett. 2010;5(5):908–912.
  • Wang X, Low XC, Hou W, et al. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano. 2014;8(12):12151–12166.
  • Xi G, Robinson E, Mania-Farnell B, et al. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed Nanotechnol Biol Med. 2014;10(2):381–391.
  • Zhang XQ, Chen M, Lam R, et al. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano. 2009;3(9):2609–2616.
  • Barras A, Martin FA, Bande O, et al. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale. 2013;5(6):2307–2316.
  • Cao W, Peng X, Chen X, et al. Facile synthesis of cationic polymer functionalized nanodiamond with high dispersity and antibacterial activity. J Mater Sci. 2017;52(4):1856–1867.
  • Gaillard C, Girard HA, Falck C, et al. Peptide nucleic acid–nanodiamonds: covalent and stable conjugates for DNA targeting. RSC Adv. 2014;4(7):3566–3572.
  • Nicolau E, Méndez J, Fonseca JJ, et al. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles. Bioelectrochemistry. 2012;85:1–6.
  • Puzyr AP, Burov AE, Bondar VS, et al. Neutralization of aflatoxin B1 by ozone treatment and adsorption by nanodiamonds. Nanotechnol Russia. 2010;5(1-2):137–141.
  • Turcheniuk V, Raks V, Issa R, et al. Antimicrobial activity of menthol modified nanodiamond particles. Diamond Relat Mater. 2015;57:2–8.
  • Wehling J, Dringen R, Zare RN, et al. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–6483.
  • Wu Y, Weil T. Nanodiamonds for biological applications. Phys Sci Rev. 2017;2(6):20160104.
  • Baccarin M, Rowley-Neale SJ, Cavalheiro ÉT, et al. Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid. Microchim Acta. 2019;186(3):1–9.
  • Bian L, Zong H, Li C, et al. Amperometric determination of hydroquinone and catechol based on nanodiamond powder electrode. Int J Electrochem Sci. 2019;14:186–195.
  • Cheng XB, Zhao MQ, Chen C, et al. Nanodiamonds suppress the growth of lithium dendrites. Nat Commun. 2017;8(1):1–9.
  • Varley TS, Hirani M, Harrison G, et al. Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. Faraday Discuss. 2014;172:349–364.
  • Alfaro MAQ, Ferro S, Martínez-Huitle CA, et al. Boron doped diamond electrode for the wastewater treatment. J Braz Chem Soc. 2006;17(2):227–236.
  • Chen C, Nurhayati E, Juang Y, et al. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode. J Environ Sci. 2016;45:100–107.
  • Khataee A, Khataee A, Fathinia M, et al. Kinetic modeling of photoassisted-electrochemical process for degradation of an azo dye using boron-doped diamond anode and cathode with carbon nanotubes. J Ind Eng Chem. 2013;19(6):1890–1894.
  • Yotinov I, Belouhova M, Schneider I, et al. Application of nanodiamonds in wastewater treatment technologies. Ecol Eng Environ Protect. 2014;1:51–60.
  • Yotinov I, Todorova Y, Schneider I, et al. The effect of nanodiamonds on phenol biodegradation by Pseudomonas sp. strain isolated from polluted sediments. J Nanosci Nanotechnol. 2016;16(7):7696–7706.
  • Jin XC, Liu GQ, Xu ZH, et al. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol. 2007;74(1):239–243.
  • Sandhya S. Biodegradation of azo dyes under anaerobic condition: role of azoreductase. In: Atacag Erkurt, H., editor. BT - Biodegradation of azo dyes. Springer Berlin Heidelberg; 2010. p. 39–57.
  • Singh P, Iyengar L, Pandey A. Bacterial decolorization and degradation of azo dyes. In: Singh, S. N., editor. BT - Microbial degradation of xenobiotics. Springer Berlin Heidelberg; 2012. p. 101–133.
  • Saratale RG, Saratale GD, Chang JS, et al. Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng. 2011;42(1):138–157.
  • de Aragao Umbuzeiro G, Freeman HS, Warren SH, et al. The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere. 2005;60(1):55–64.
  • Puvaneswari N, Muthukrishnan J, Gunasekaran P. Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol. 2006;44(8):618–626.
  • Rajaguru P, Vidya L, Baskarasethupathi B, et al. Genotoxicity evaluation of polluted ground water in human peripheral blood lymphocytes using the comet assay. Mutat Res. 2002;517(1-2):29–37.
  • Furukawa K, Simon JR, Chakrabarty AM. Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis. J Bacteriol. 1983;154(3):1356–1362.
  • Topalova Y. Biological control and wastewater management. Sofia (Bulgaria): Publish-Sai-Set-Eco, 2009.
  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE. 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: American Public Health Association (APHA) Press.
  • Grekova-Vasileva M. 2009. Bioalgorithms for management of wastewater treatment in textile industry [PhD thesis]. Sofia, Bulgaria: Sofia University.
  • Kuznetsov SI, Dubinina GA. Methods of investigation of aquatic microorganisms, Nauka, Moscow. 1989;
  • Willetts AJ, Cain RB. Microbial metabolism of alkylbenzene sulphonates. Bacterial metabolism of undecylbenzene-p-sulphonate and dodecylbenzene-p-sulphonate. Biochem J. 1972;129(2):389–402.
  • Farr DR, Cain RB. Catechol oxygenase induction in Pseudomonas aeruginosa. Biochem J. 1968;106(4):879–885.
  • Veeger C, DerVartanian DV, Zeylemaker WP. 1969. [16] succinate dehydrogenase: [EC 1.3. 99.1 succinate:(acceptor) oxidoreductase]. In Methods in enzymology. (Vol. 13, pp. 81–90). New York: Academic Press.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Loy A, Maixner F, Wagner M, et al. probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res. 2007;35(Database):D800–D804.
  • Nielsen PH, Lemmer H, Daims H. 2009. Identification and quantification of microorganisms in activated sludge and biofilms by FISH: introduction. In FISH handbook for biological wastewater treatment. London (United Kingdom): Iwa Publishing.
  • Ott RL, Longnecker MT. 2015. An introduction to statistical methods and data analysis. Boston, USA: Cengage Learning.
  • Belouhova MV, Schneider ID, Topalova YI. Effect of nanodiamonds on model biphasic azo-detoxification process applied in the critical technological situations. Bulg J Agric Sci. 2013;19(2):
  • Haque MM, Haque MA, Mosharaf MK, et al. Decolorization, degradation and detoxification of carcinogenic sulfonated azo dye methyl orange by newly developed biofilm consortia. Saudi J Biol Sci. 2021;28(1):793–804.
  • Mishra R, Panda AK, De Mandal S, et al. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol. 2020;11:566325.
  • Nadar S, Khan T, Patching SG, et al. Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms. 2022;10(2):303.
  • Yotinov I, Belouhova M, Foteva A, et al. Application of nanodiamonds in modelled bioremediation of phenol pollution in river sediments. Processes. 2022;10(3):602.
  • Schneider ID, Topalova YI. Effect of bioaugmentation on anaerobic wastewater treatment in the dairy industry. J Dairy Sci. 2011;94(9):4389–4397.
  • Schneider I, Topalova Y. Microbial structure and functions of biofilm during wastewater treatment in the dairy industry. Biotechnol Biotechnol Equip. 2013;27(3):3782–3786.
  • Belouhova M, Schneider I, Chakarov S, et al. Microbial community development of biofilm in Amaranth decolourization technology analysed by FISH. Biotechnol Biotechnol Equip. 2014;28(4):635–642.
  • Iqbal A, Ali N, Shang ZH, et al. Decolorization and toxicity evaluation of simulated textile effluent via natural microbial consortia in attached growth reactors. Environ Technol Innov. 2022;26:102284.
  • Karnwal A. Textile azo dye decolorization and detoxification using bacteria isolated from textile effluents. BioTechnologia. 2019;100(4):373–385.
  • Ihsanullah I, Jamal A, Ilyas M, et al. Bioremediation of dyes: current status and prospects. J Water Process Eng. 2020;38:101680.
  • Maqbool Z, Shahid M, Azeem F, et al. Application of a dye-decolorizing Pseudomonas aeruginosa strain ZM130 for remediation of textile wastewaters in aerobic/anaerobic sequential batch bioreactor and soil columns. Water Air Soil Pollut. 2020;231(8):1–18.
  • Samuchiwal S, Gola D, Malik A. Decolourization of textile effluent using native microbial consortium enriched from textile industry effluent. J Hazard Mater. 2021;402:123835.
  • Belouhova M, Topalova Y. Investigating the functional and structural adaptation changes of biofilm communities toward better azo-dye wastewater treatment. BJECC. 2016;6(4):309–318. Article no. BJECC.2016.028