3,912
Views
0
CrossRef citations to date
0
Altmetric
Research Article

3.5 GHz radiofrequency radiation may affect biomechanics of bone and muscle of diabetics

, , , , &
Article: 2199096 | Received 27 Feb 2023, Accepted 29 Mar 2023, Published online: 06 Apr 2023

References

  • Bektas H, Dasdag S, Bektas MS. Evaluation of 900 and 1800 mhz radiofrequency radiation emitted from mobile phones on pregnant women. J Int Dent Med Res. 2021;14(4):329–338.
  • Durgun M, Dasdag S, Erbatur S, et al. Effect of 2100 MHz mobile phone radiation on healing of mandibular fractures: an experimental study in rabbits. Biotechnol Biotechnol Equip. 2016;30(1):1–10.
  • Ciejka E, Skibska B, Kleniewska P, et al. Influence of low frequency magnetic field on chosen parameters of oxidative stress in rat’s muscles. Polski merkuriusz lekarski. Organ Polskiego Towarzystwa Lekarskiego. 2010;29(174):361–364.
  • Sieroń-Stołtny K, Teister Ł, Cieślar G, et al. The influence of electromagnetic radiation generated by a mobile phone on the skeletal system of rats. Biomed Res Int. 2015;2015:1–11.
  • Schwartz Z, Simon B, Duran M, et al. Pulsed electromagnetic fields enhance BMP‐2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res. 2008;26(9):1250–1255.
  • Luther G, Wagner R, Zhu E, et al. BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr Gene Ther. 2011;11(3):229–240.
  • Gürgül S, Erdal N, Yılmaz ŞN, et al. Deterioration of bone quality by long-term magnetic field with extremely low frequency in rats. Bone. 2008;42(1):74–80.
  • Bektas H, Algul S, Altindag F, et al. Effects of 3.5 GHz radiofrequency radiation on ghrelin, nesfatin-1, and irisin levels in diabetic and healthy brains. J Chem Neuroanat. 2022;126:102168.
  • Dasgupta S, Wang G, Simonich MT, et al. Impacts of high dose 3.5 GHz cellphone radiofrequency on zebrafish embryonic development. PLoS One. 2020;15(7):e0235869.
  • Wang Y, Jiang Z, Zhang L, et al. 3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster. Environ Pollut. 2022;294:118646.
  • Dasdag S, Akdag MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanat. 2016; Sep75(Pt B):85–93.
  • Yakymenko I, Tsybulin O, Sidorik E, et al. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 2016;35(2):186–202.
  • Erkut A, Tumkaya L, Balik MS, et al. The effect of prenatal exposure to 1800 MHz electromagnetic field on calcineurin and bone development in rats. Acta Cir Bras. 2016;31(2):74–83.
  • Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. New York: Lippincott Williams & Wilkins; 2001.
  • Cowin SC. Bone mechanics handbook. Boca Raton: CRC Press; 2001.
  • Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(1):5.47.1–5.47.20.
  • Bektas H, Nalbant A, Akdag MB, et al. Adverse effects of 900, 1800 and 2100 MHz radiofrequency radiation emitted from mobile phones on bone and skeletal muscle. Electromagnetic Biology and Medicine. 2023;42(1):1–9.
  • Aebi H. Catalase in vitro. Meth. Enzymol. 1984;105:121–126.
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–888.
  • Gutteridge JM. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact. 1994;91(2-3):133–140.
  • Bar–Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia—a preliminary report. J Emerg Med. 2000;19(4):311–315.
  • Bektas H. The effects of mobile phones on diabetes and appetite. J Int Dent Med Res. 2022;15:441–447.
  • An YH, Draughn RA, editors. Mechanical testing of bone and the bone-implant interface. Boca Raton: CRC Press; 1999.
  • Burr D. The contribution of the organic matrix to bone’s material properties. Bone. 2002;31(1):8–11.
  • Aslan A, Kırdemır V, Kocak A, et al. Influence of 1800 MHz GSM-like electromagnetic radiation exposure on fracture healing. Arch Med Res. 2014;45(2):125–131.
  • Atay T, Aksoy BA, Aydogan NH, et al. Effect of electromagnetic field induced by radio frequency waves at 900 to 1800 MHz on bone mineral density of iliac bone wings. J Craniofac Surg. 2009;20(5):1556–1560.
  • Aslan A, Aydoğan NH, Atay T, et al. The effects of electromagnetic field exposure at short and long term of 900 mhz frequency emitted from mobile phones on rat bone tissue. Dicle Medical Journal/Dicle Tip Dergisi. 2011;38(4):452–457.
  • Sen B, Dasdag S, Celik S, et al. The effect of low densitiy 9450 MHz microwave irradiation on fracture healing. Proc. of. International Symposium of Millimeter Waves of Non-Thermal Intensity in Medicine, Moscow, Russia. 1991. 1–2.
  • Zhang X, Liu X, Pan L, et al. Magnetic fields at extremely low-frequency (50 hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochem Biophys Res Commun. 2010;396(3):662–666.
  • Zhou J, Ming L-G, Ge B-F, et al. Effects of 50 hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone. 2011;49(4):753–761.
  • Carrasco C, Rodriguez AB, Pariente JA. Melatonin as a stabilizer of mitochondrial function: role in diseases and aging. Turk J Biol. 2015;39(6):822–831.
  • Ferretti J, Cointry G, Capozza R, et al. Analysis of biomechanical effects on bone and on the muscle-bone interactions in small animal models. J Musculoskelet Neuronal Interact. 2001;1(3):263–274.
  • Comelekoglu U, Yalin S, Bagis S, et al. Low-exposure cadmium is more toxic on osteoporotic rat femoral bone: mechanical, biochemical, and histopathological evaluation. Ecotoxicol Environ Saf. 2007;66(2):267–271.
  • Sbarouni E, Georgiadou P, Voudris V. Ischemia modified albumin changes–review and clinical implications. Clin Chem Lab Med. 2011;49(2):177–184.
  • Özsürekci C, Şengül Ayçiçek G, Çalışkan H, et al. Thiol–disulfide homeostasis and ischemia‐modified albumin as a marker of oxidative stress in patients with sarcopenia. Geriatr Gerontol Int. 2021;21(7):584–589.
  • Apple FS, Quist HE, Otto AP, et al. Release characteristics of cardiac biomarkers and ischemia-modified albumin as measured by the albumin cobalt-binding test after a marathon race. Clin Chem. 2002;48(7):1097–1100.
  • Sinha MK, Gaze DC, Tippins JR, et al. Ischemia modified albumin is a sensitive marker of myocardial ischemia after percutaneous coronary intervention. Circulation. 2003;107(19):2403–2405.
  • Zapico-Muñiz E, Santaló-Bel M, Mercé-Muntañola J, et al. Ischemia-modified albumin during skeletal muscle ischemia. Clin Chem. 2004;50(6):1063–1065.
  • Piwowar A, Knapik-Kordecka M, Warwas M. Ischemia-modified albumin level in type 2 diabetes mellitus–preliminary report. Dis Markers. 2008;24(6):311–317.
  • Morabito C, Rovetta F, Bizzarri M, et al. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: a real-time, single-cell approach. Free Radic Biol Med. 2010;48(4):579–589.
  • Akdag MZ, Dasdag S, Canturk F, et al. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 2016;75(Pt B):116–122.
  • Ahlbom A, Bridges J, De Seze R, et al. Possible effects of electromagnetic fields (EMF) on human health–opinion of the scientific committee on emerging and newly identified health risks (SCENIHR). Toxicology. 2008;246(2-3):248–250.