1,259
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exogenous application of melatonin improves the growth and physiological properties of blueberry seedlings under salt stress

, , , , , , & show all
Article: 2202781 | Received 23 Nov 2022, Accepted 11 Apr 2023, Published online: 09 May 2023

References

  • Hassani A, Azapagic A, Shokri N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc Natl Acad Sci USA. 2020;117(52):1–14.
  • Hwang WM, Kim D, Kang K, et al. Flavobacterium eburneum sp. nov., isolated from reclaimed saline land soil. Int J Syst Evol Microbiol. 2017;67(1):55–59.
  • Yan YY, Wang SS, Wei M, et al. Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Hortic Plant J. 2018;4(6):239–249.
  • Rengasamy P. World salinization with emphasis on Australia. J Exp Bot. 2006;57(5):1017–1023.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651–681.
  • van Zelm E, Zhang Y, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol. 2020;71:403–433.
  • Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci. 2005;45(2):437–448.
  • Sun TT, Wang C, Liu R, et al. ThHSFA1 confers salt stress tolerance through modulation of reactive oxygen species scavenging by directly regulating ThWRKY4. Int J Mol Sci. 2021;22(9):5048.
  • Rady MM, Hemida KA. Sequenced application of ascorbate-proline-glutathione improves salt tolerance in maize seedlings. Ecotoxicol Environ Saf. 2016;133:252–259.
  • Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiol Plant. 2021;172(2):1321–1335.
  • El Moukhtari A, Cabassa-Hourton C, Farissi M, et al. How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci. 2020;11:1127.
  • Vander Kloet SP. The genus vaccinium in North america. Canadian Institute of International Affairs. 1988;101(6):2609–2625.
  • Miller K, Feucht W, Schmid M. Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: a brief overview. Nutrients. 2019;11(7):1510.
  • Boespflug EL, Eliassen JC, Dudley JA, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018;21(4):297–305.
  • Silva S, Costa EM, Veiga M, et al. Health promoting properties of blueberries: a review. Crit Rev Food Sci Nutr. 2020;60(2):181–200.
  • Kalt W, Cassidy A, Howard LR, et al. Recent research on the health benefits of blueberries and their anthocyanins. Adv Nutr. 2020;11(2):224–236.
  • Wright GC, Patten KD, Drew MC. Salinity and supplemental calciumInfluence growth of rabbiteye and Southern highbush blueberry. Jashs. 1992;117(5):749–756.
  • Hattori A, Migitaka H, Iigo M, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995;35(3):627–634.
  • Xia H, Shen Y, Shen T, et al. Melatonin accumulation in sweet cherry and its influence on fruit quality and antioxidant properties. Molecules. 2020;25(3):753.
  • Dubbels R, Reiter RJ, Klenke E, et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res. 1995;18(1):28–31.
  • Wang K, Xing Q, Ahammed GJ, et al. Functions and prospects of melatonin in plant growth, yield, and quality. J Exp Bot. 2022;73(17):5928–5946.
  • Qiao Y, Yin L, Wang B, et al. Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat. Plant Physiol Biochem. 2019;139:342–349.
  • Tan X, Long W, Zeng L, et al. Melatonin-induced transcriptome variation of rapeseed seedlings under salt stress. Int J Mol Sci. 2019;20(21):5355.
  • Vafadar F, Amooaghaie R, Ehsanzadeh P, et al. Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in dracocephalum kotschyi. J Plant Physiol. 2020;252:153237.
  • Sharif R, Xie C, Zhang H, et al. Melatonin and its effects on plant systems. Molecules. 2018;23(9):2352.
  • Liu TT, Xing GM, Chen ZF, et al. Effect of exogenous melatonin on salt stress in cucumber: alleviating effect and molecular basis. Biotechnol Biotechnol Equipment. 2022;36(1):818–827.
  • Wang P, Sun X, Li C, et al. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res. 2013;54(3):292–302.
  • Ayyaz A, Shahzadi AK, Fatima S, et al. Uncovering the role of melatonin in plant stress tolerance. Theor Exp Plant Physiol. 2022;34(3):335–346.
  • Chen L, Liu L, Lu B, et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (gossypium hirsutum L.). PLoS One. 2020;15(1):e0228241.
  • Debnath B, Hussain M, Irshad M, et al. Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules. 2018;23(2):388–403.
  • Butsanets PA, Baik AS, Shugaev AG, et al. Melatonin inhibits peroxide production in plant mitochondria. Dokl Biochem Biophys. 2019;489(1):367–369.
  • Arnao MB, Hernández-Ruiz J. Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 2014;19(12):789–797.
  • Yang Y, Cao Y, Li Z, et al. Interactive effects of exogenous melatonin and rhizophagus intraradices on saline-alkaline stress tolerance in leymus chinensis. Mycorrhiza. 2020;30(2–3):357–371.
  • Zahedi SM, Hosseini MS, Abadía J, et al. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (fragaria × ananassa duch.). Plant Physiol Biochem. 2020;149:313–323.
  • Ke Q, Ye J, Wang B, et al. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci. 2018;9:914.
  • Luis Castañares J, Alberto Bouzo C. Effect of exogenous melatonin on seed germination and seedling growth in melon (cucumis melo l.) under salt stress. Hortic Plant J. 2019;5(2):79–87.
  • Zhang N, Sun Q, Zhang H, et al. Roles of melatonin in abiotic stress resistance in plants. J Exp Bot. 2015;66(3):647–656.
  • Back K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2021;105(2):376–391.
  • Zhan H, Nie X, Zhang T, et al. Melatonin: a small molecule but important for salt stress tolerance in plants. Int J Mol Sci. 2019;20(3):709.
  • Li J, Yuan F, Liu Y, et al. Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC Plant Biol. 2020;20(1):493.
  • Wei W, Li QT, Chu YN, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot. 2015;66(3):695–707.
  • Liu DD, Sun XS, Liu L, et al. Overexpression of the melatonin synthesis-related gene SlCOMT1 improves the resistance of tomato to salt stress. Molecules. 2019;24(8):1514.
  • Debnath B, Islam W, Li M, et al. Melatonin mediates enhancement of stress tolerance in plants. IJMS. 2019;20(5):1040.
  • Wellburn AR. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144(3):307–313.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–207.
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125(1):189–198.
  • Restrepo H, Gómez MI, Garzón A, et al. Respuesta bioquímica de plántulasde maíz (Zea mays L.) a diferentes condiciones de temperaturas nocturnas. Rev Colomb Cienc Hortic. 2014;7(2):252–262.
  • Jiang D, Lu B, Liu L, et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biol. 2021;21(1):331.
  • Guo H, Huang Z, Li M, et al. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci Rep. 2020;10(1):21844.
  • Hossain, Akbar, editor. Plant stress physiology. London: IntechOpen; 2021.
  • Asif M, Pervez A, Irshad U, et al. Melatonin and plant growth-promoting rhizobacteria alleviate the cadmium andarsenic stresses and increase the growth of Spinacia oleracea L. Plant Soil Environ. 2020;66(5):234–241.
  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, et al. Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules. 2018;23(3):535.
  • Lee HY, Byeon Y, Back K. Melatonin as a signal molecule triggering defense responses against pathogen attack in arabidopsis and tobacco. J Pineal Res. 2014;57(3):262–268.
  • Qian Y, Tan DX, Reiter RJ, et al. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in arabidopsis. Sci Rep. 2015;5:15815.
  • Shi H, Jiang C, Ye T, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [cynodon dactylon (L). pers.] by exogenous melatonin. J Exp Bot. 2015;66(3):681–694.
  • Bozdag B, Ozdemir A, Hamurcu M, et al. Numerical and statistical evaluation of nitric oxide effect on leaf anatomy of Triticum genotypes under salinity stress. J Microbiol Exp. 2020;8(4):140–146.
  • Yuan F, Guo J, Shabala S, et al. Reproductive physiology of halophytes: current standing. Front Plant Sci. 2018;9:9, 1954.
  • Fu M, Li C, Ma F. Physiological responses and tolerance to NaCl stress in different biotypes of malus prunifolia. Euphytica. 2013;189(1):101–109.
  • Park S, Lee DE, Jang H, et al. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J Pineal Res. 2013;54(3):258–263.
  • Jiang C, Cui Q, Feng K, et al. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant. 2016;38(4):82.
  • Zhang H, Zhong H, Wang J, et al. Adaptive changes in chlorophyll content and photosynthetic features to low light in physocarpus amurensis maxim and physocarpus opulifolius “diabolo. PeerJ. 2016;4:e2125.
  • Ma Q, Yue LJ, Zhang JL, et al. Sodium chloride improves photosynthesis and water status in the succulent xerophyte zygophyllum xanthoxylum. Tree Physiol. 2012;32(1):4–13.
  • Wang LY, Liu JL, Wang WX, et al. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynt. 2016;54(1):19–27.
  • Shi H, Chen Y, Tan DX, et al. Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in arabidopsis. J Pineal Res. 2015;59(1):102–108.
  • Matsumoto K, Kobayashi T. Relative tolerance of Japanese apple (malus spp.) rootstock strains to NaCl stress. Acta Hortic. 2020;1289(1289):9–18.
  • Jiang C, Zheng Q, Liu Z, et al. Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar (populus × euramericana ‘neva’). Trees. 2012;26(3):685–694.
  • Jiang CQ, Quan LT, Shi F, et al. Distribution of mineral nutrients and active ingredients in aloe vera irrigated with diluted seawater. Pedosphere. 2014;24(6):722–730.