657
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Genome sequence of Bacillus velezensis LZN01 inhibiting Fusarium oxysporum f. sp. niveum and producing myriocin

, & ORCID Icon
Article: 2227731 | Received 16 Feb 2023, Accepted 30 May 2023, Published online: 23 Jun 2023

References

  • Arnao MB, Hernandez-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res. 2015;59(2):1–11. doi: 10.1111/jpi.12253.
  • Everts KL, Himmelstein JC. Fusarium wilt of watermelon: towards sustainable management of a re-emerging plant disease. Crop Prot. 2015;73:93–99. doi: 10.1016/j.cropro.2015.02.019.
  • Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28(4):1327–1350. doi: 10.1007/s11274-011-0979-9.
  • Srivastava S, Bist V, Srivastava S, et al. Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Front Plant Sci. 2016;7:587. doi: 10.3389/fpls.2016.00587.
  • Wu L, Wu HJ, Qiao J, et al. Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front Microbiol. 2015;6:1395. doi: 10.3389/fmicb.2015.01395.
  • Ramirez V, Martinez J, Bustillos-Cristales MDR, et al. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. J Appl Microbiol. 2022;132(1):470–482. doi: 10.1111/jam.15179.
  • Rabbee MF, Ali MS, Choi J, et al. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules. 2019;24(6):1046. doi: 10.3390/molecules24061046.
  • Belbahri L, Chenari Bouket A, Rekik I, et al. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front Microbiol. 2017;8:1438. doi: 10.3389/fmicb.2017.01438.
  • Kluepfel D, Bagli J, Baker H, et al. Myriocin, a new antifungal antibiotic from Myriococcum albomyces. J Antibiot (Tokyo). 1972;25(2):109–115. doi: 10.7164/antibiotics.25.109.
  • Craveri R, Manachini PL, Aragozzini F. Thermozymocidin new antifungal antibiotic from a thermophilic eumycete. Experientia. 1972;28(7):867–868. doi: 10.1007/BF01923181.
  • Momoi M, Tanoue D, Sun Y, et al. SLI1 (YGR212W) is a major gene conferring resistance to the sphingolipid biosynthesis inhibitor ISP-1, and encodes an ISP-1 N-acetyltransferase in yeast. Biochem J. 2004;381(Pt 1):321–328. doi: 10.1042/BJ20040108.
  • Harrison PJ, Dunn TM, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep. 2018;35(9):921–954. doi: 10.1039/c8np00019k.
  • Pereira CB, de Oliveira DM, Hughes AF, et al. Endophytic fungal compounds active against Cryptococcus neoformans and C. gattii. J Antibiot (Tokyo). 2015;68(7):436–444. doi: 10.1038/ja.2015.11.
  • Xu W, Wang H, Lv Z, et al. Antifungal activity and functional components of cell-free supernatant from Bacillus amyloliquefaciens LZN01 inhibit Fusarium oxysporum f. sp. niveum growth. Biotechnol Biotec Eq. 2019;33(1):1042–1052. doi: 10.1080/13102818.2019.1637279.
  • Wang H, Wang Z, Liu Z, et al. Membrane disruption of Fusarium oxysporum f. sp. niveum induced by myriocin from Bacillus amyloliquefaciens LZN01. Microb Biotechnol. 2021;14(2):517–534. doi: 10.1111/1751-7915.13659.
  • Wang H, Wang Z, Xu W, et al. Comprehensive transcriptomic and proteomic analyses identify intracellular targets for myriocin to induce Fusarium oxysporum f. sp. niveum cell death. Microb Cell Fact. 2021;20(1):69. doi: 10.1186/s12934-021-01560-z.
  • Chen JK, Lane WS, Schreiber SL. The identification of myriocin-binding proteins. Chem Biol. 1999;6(4):221–235. doi: 10.1016/S1074-5521(99)80038-6.
  • Rocha FG, Moye ZD, Ottenberg G, et al. Porphyromonas gingivalis sphingolipid synthesis limits the host inflammatory response. J Dent Res. 2020;99(5):568–576. doi: 10.1177/0022034520908784.
  • Avila-Garcia R, Valdes J, Jauregui-Wade JM, et al. The metabolic pathway of sphingolipids biosynthesis and signaling in Entamoeba histolytica. Biochem Biophys Res Commun. 2020;522(3):574–579. doi: 10.1016/j.bbrc.2019.11.116.
  • Parashuraman S, D'Angelo G. Visualizing sphingolipid biosynthesis in cells. Chem Phys Lipids. 2019;218:103–111. doi: 10.1016/j.chemphyslip.2018.11.003.
  • Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. doi: 10.1371/journal.pone.0112963.
  • Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645. doi: 10.1101/gr.092759.109.
  • Murtas G, Marcone GL, Sacchi S, et al. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol Life Sci. 2020;77(24):5131–5148. doi: 10.1007/s00018-020-03574-z.
  • Wang LT, Lee FL, Tai CJ, et al. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int J Syst Evol Microbiol. 2008;58(Pt 3):671–675. doi: 10.1099/ijs.0.65191-0.
  • Dunlap CA, Kim SJ, Kwon SW, et al. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. Int J Syst Evol Microbiol. 2015;65(7):2104–2109. doi: 10.1099/ijs.0.000226.
  • Dunlap CA, Kim SJ, Kwon SW, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol. 2016;66(3):1212–1217. doi: 10.1099/ijsem.0.000858.
  • Nanjani S, Soni R, Paul D, et al. Genome analysis uncovers the prolific antagonistic and plant growth-promoting potential of endophyte Bacillus velezensis K1. Gene. 2022;836:146671. doi: 10.1016/j.gene.2022.146671.
  • Niazi A, Manzoor S, Asari S, et al. Genome analysis of Bacillus amyloliquefaciens subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. PLoS One. 2014;9(8):e104651. doi: 10.1371/journal.pone.0104651.
  • Kour D, Rana KL, Kaur T, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere. 2021;31(1):43–75. doi: 10.1016/S1002-0160(20)60057-1.
  • Zhou L, Zhang T, Tang S, et al. Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol. Anton Van Leeuw. 2020;113(11):1539–1558. doi: 10.1007/s10482-020-01461-y.
  • Loper JE, Hassan KA, Mavrodi DV, et al. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 2012;8(7):e1002784. doi: 10.1371/journal.pgen.1002784.
  • Tomita M, Kikuchi A, Kobayashi M, et al. Characterization of antifungal activity of the GH-46 subclass III chitosanase from Bacillus circulans MH-K1. Anton Van Leeuw. 2013;104(5):737–748. doi: 10.1007/s10482-013-9982-5.
  • Gao X-A, Ju W-T, Jung W-J, et al. Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydr Polym. 2008;72(3):513–520. doi: 10.1016/j.carbpol.2007.09.025.
  • Yuan J, Li B, Zhang N, et al. Production of bacillomycin- and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soilborne plant pathogens. J Agric Food Chem. 2012;60(12):2976–2981. doi: 10.1021/jf204868z.
  • Wu L, Wu H, Chen L, et al. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep. 2015;5(1):12975. doi: 10.1038/srep12975.
  • Crits-Christoph A, Diamond S, Butterfield CN, et al. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature. 2018;558(7710):440–444. doi: 10.1038/s41586-018-0207-y.
  • Patel PS, Huang S, Fisher S, et al. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity. J Antibiot (Tokyo). 1995;48(9):997–1003. doi: 10.7164/antibiotics.48.997.
  • Liu G, Kong Y, Fan Y, et al. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J Biotechnol. 2017;249:20–24. doi: 10.1016/j.jbiotec.2017.03.018.
  • Fan B, Wang C, Song X, et al. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol. 2018;9:2491. doi: 10.3389/fmicb.2018.02491.
  • Wang KX, Xu WH, Chen ZN, et al. Complete genome sequence of Bacillus velezensis WB, an isolate from the watermelon rhizosphere: genomic insights into its antifungal effects. J Glob Antimicrob Resist. 2022;30:442–444. doi: 10.1016/j.jgar.2022.05.010.
  • Yi HS, Ahn YR, Song GC, et al. Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol. 2016;7:993. doi: 10.3389/fmicb.2016.00993.
  • Liu Y, Feng H, Chen L, et al. Root-secreted spermine binds to Bacillus amyloliquefaciens SQR9 histidine kinase kind and modulates biofilm formation. Mol Plant Microbe Interact. 2020;33(3):423–432. doi: 10.1094/MPMI-07-19-0201-R.
  • de Melo NR, Abdrahman A, Greig C, et al. Myriocin significantly increases the mortality of a non-mammalian model host during candida pathogenesis. PLoS One. 2013;8(11):e78905. doi: 10.1371/journal.pone.0078905.
  • Olsen I, Jantzen E. Sphingolipids in bacteria and fungi. Anaerobe. 2001;7(2):103–112. doi: 10.1006/anae.2001.0376.
  • Kihara A, Igarashi Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem. 2004;279(47):49243–49250. doi: 10.1074/jbc.M405915200.
  • Persson B, Kallberg Y, Bray JE, et al. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem Biol Interact. 2009;178(1–3):94–98. doi: 10.1016/j.cbi.2008.10.040.
  • Yoshikawa M, Yokokawa Y, Okuno Y, et al. Total synthesis of a novel immunosuppressant, myriocin (thermozymocidin, ISP-I), and Z-myriocin. Chem Pharm Bull (Tokyo). 1994;42(4):994–996. doi: 10.1248/cpb.42.994.
  • Banfi L, Beretta M, Colombo L, et al. Total synthesis of (+)-thermozymocidin (myriocin) from D-fructose. J Chem Soc Chem Commun. 1982;(9):488–490. doi: 10.1039/c39820000488.
  • Gajdosíková E, Martinková M, Gonda J, et al. Microwave accelerated aza-Claisen rearrangement. Molecules. 2008;13(11):2837–2847. doi: 10.3390/molecules131102837.