525
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oligo-dT anchored cDNA-SRAP and cDNA-SCoT aided identification of transcripts differentially expressed during the early stages of recovery of resurrection plant Haberlea rhodopensis Friv. from freezing-induced desiccation

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2229450 | Received 17 May 2023, Accepted 21 Jun 2023, Published online: 06 Jul 2023

References

  • Fernandez-Marin B, Nadal M, Gago J, et al. Born to revive: molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. New Phytol. 2020;226(3):1–12. doi: 10.1111/nph.16464.
  • Mihailova G, Gashi B, Krastev N, et al. Acquisition of freezing tolerance of resurrection species from Gesneriaceae, a comparative study. Plants. 2023;12(9):1893. doi: 10.3390/plants12091893.
  • Mihailova G, Solti A, Sarvari E, et al. Freezing tolerance of photosynthetic apparatus in the homoiochlorophyllous resurrection plant Haberlea rhodopensis. Environ Exp Bot. 2020;178:104157. doi: 10.1016/j.envexpbot.2020.104157.
  • Georgieva K, Mihailova G, Fernandez-Marin B, et al. Protective strategies of Haberlea rhodopensis for acquisition of freezing tolerance: interaction between dehydration and low temperature. IJMS. 2022;23(23):15050. doi: 10.3390/ijms232315050.
  • Georgieva K, Mihailova G, Gigova L, et al. The role of antioxidant defense in freezing tolerance of resurrection plant Haberlea rhodopensis. Physiol Mol Biol Plants. 2021;27(5):1119–1133. doi: 10.1007/s12298-021-00998-0.
  • Oliver MJ, Farrant JM, Hilhorst HWM, et al. Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annu Rev Plant Biol. 2020;71:435–460. doi: 10.1146/annurev-arplant-071219-105542.
  • Georgieva K, Mihailova G, Velitchkova M, et al. Recovery of photosynthetic activity of resurrection plant Haberlea rhodopensis from drought- and freezing-induced desiccation. Photosynthetica. 2020;58(4):911–921. doi: 10.32615/ps.2020.044.
  • Georgieva K, Popova AV, Mihailova G, et al. Limiting steps and the contribution of alternative electron flow pathways in the recovery of the photosynthetic functions after freezing-induced desiccation of Haberlea rhodopensis. Photosynthetica. 2022;60:136–146. doi: 10.32615/ps.2022.008.
  • Mihailova G, Christov NK, Sarvari E, et al. Reactivation of the photosynthetic apparatus of resurrection plant Haberlea rhodopensis during the early phase of recovery from drought- and freezing-induced desiccation. Plants. 2022;11(17):2185. doi: 10.3390/plants11172185.
  • Mihailova G, Vasileva I, Gigova L, et al. Antioxidant defense during recovery of resurrection plant Haberlea rhodopensis from drought- and freezing-induced desiccation. Plants. 2022;11(2):175. doi: 10.3390/plants11020175.
  • Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992;257(5072):967–971. doi: 10.1126/science.1354393.
  • Collard BCY, Mackill DJ. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep. 2009;27(1):86–93. doi: 10.1007/s11105-008-0060-5.
  • Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet. 2001;103(2–3):455–461. doi: 10.1007/s001220100570.
  • Alekseeva M, Zagorcheva T, Rusanova M, et al. Genetic and flower volatile diversity in natural populations of Origanum vulgare subsp. hirtum (Link) Ietsw. in Bulgaria: toward the development of a core collection. Front Plant Sci. 2021;12:679063. doi: 10.3389/fpls.2021.679063.
  • Rai MK. Start codon targeted (SCoT) polymorphism marker in plant genome analysis: current status and prospects. Planta. 2023;257(2):34. doi: 10.1007/s00425-023-04067-6.
  • Saboori S, Noormohammadi Z, Sheidai M, et al. SCoT molecular markers and genetic fingerprinting of date palm (phoenix dactylifera L.) cultivars. Genet Resour Crop Evol. 2020;67(1):73–82. doi: 10.1007/s10722-019-00854-x.
  • Zagorcheva T, Stanev S, Rusanov K, et al. SRAP markers for genetic diversity assessment of lavender (Lavandula angustifolia mill.) varieties and breeding lines. Biotechnol Biotechnol Equip. 2020;34(1):303–308. doi: 10.1080/13102818.2020.1742788.
  • Huang N, Zhang YY, Xiao XH, et al. Identification of smut-responsive genes in sugarcane using cDNA-SRAP. Genet Mol Res. 2015;14(2):6808–6818. doi: 10.4238/2015.June.18.23.
  • Liu C, Yuan D, Zhang X, et al. Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP. J Genet. 2013;92(2):175–181. doi: 10.1007/s12041-013-0238-y.
  • Que Y, Xu L, Lin J, et al. cDNA-SRAP and its application in differential gene expression analysis: a case study in Erianthus arundinaceum. J Biomed Biotechnol. 2012;2012:390107. doi: 10.1155/2012/390107.
  • Wu J-M, Li Y-R, Yang L-T, et al. cDNA-SCoT: a novel rapid method for analysis of gene differential expression in sugarcane and other plants. Aust J Crop Sci. 2013;7:659–664.
  • Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012;33(2):366–369. doi: 10.1002/elps.201100335.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389.
  • Zhang Z, Schwartz S, Wagner L, et al. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1–2):203–214. doi: 10.1089/10665270050081478.
  • Wang K, Li H, Xu Y, et al. MFEprimer-3.0: quality control for PCR primers. Nucleic Acids Res. 2019;47(W1):W610–W613. doi: 10.1093/nar/gkz351.
  • Gechev TS, Benina M, Obata T, et al. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci. 2013;70(4):689–709. doi: 10.1007/s00018-012-1155-6.
  • Liu J, Moyankova D, Lin C-T, et al. Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis. BMC Plant Biol. 2018;18(1):351. doi: 10.1186/s12870-018-1566-0.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45.
  • Luo C, He XH, Hu Y, et al. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene. 2014;548(2):182–189. doi: 10.1016/j.gene.2014.07.024.
  • Georgieva T, Christov NK, Djilianov D. Identification of desiccation-regulated genes by cDNA-AFLP in Haberlea rhodopensis: a resurrection plant. Acta Physiol Plant. 2012;34(3):1055–1066. doi: 10.1007/s11738-011-0902-x.
  • Nam DK, Lee S, Zhou G, et al. Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci USA. 2002;99(9):6152–6156. doi: 10.1073/pnas.092140899.
  • Li T, Zhang Y, Liu Y, et al. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and arabidopsis plants. J Biol Chem. 2020;295(23):8064–8077. doi: 10.1074/jbc.RA120.013948.
  • Sengupta S, Mukherjee S, Basak P, et al. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci. 2015;6:656. doi: 10.3389/fpls.2015.00656.
  • Knaupp M, Mishra KB, Nedbal L, et al. Evidence for a role of raffinose in stabilizing photosystem II during freeze–thaw cycles. Planta. 2011;234(3):477–486. doi: 10.1007/s00425-011-1413-0.
  • Kumar M, Chauhan AS, Kumar M, et al. Transcriptome sequencing of chickpea (Cicer arietinum L.) genotypes for identification of drought-responsive genes under drought stress condition. Plant Mol Biol Rep. 2019;37(3):186–203. doi: 10.1007/s11105-019-01147-4.
  • de Abreu-Neto JB, Turchetto-Zolet AC, de Oliveira LF, et al. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J. 2013;280(7):1604–1616. doi: 10.1111/febs.12159.
  • Denancé N, Szurek B, Noël LD. Emerging functions of nodulin-like proteins in non-nodulating plant species. Plant Cell Physiol. 2014;55(3):469–474. doi: 10.1093/pcp/pct198.
  • Ramazan S, Jan N, John R. Comparative protein analysis of two maize genotypes with contrasting tolerance to low temperature. BMC Plant Biol. 2023;23(1):183. doi: 10.1186/s12870-023-04198-8.
  • Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in arabidopsis. Trends Plant Sci. 2002;7(3):106–111. doi: 10.1016/s1360-1385(01)02223-3.
  • Doroodian P, Hua Z. The ubiquitin switch in plant stress response. Plants (Basel). 2021;10(2):246. doi: 10.3390/plants10020246.
  • Kesawat MS, Kherawat BS, Ram C, et al. Genome-wide identification and expression profiling of aconitase gene family members reveals their roles in plant development and adaptation to diverse stress in Triticum aestivum L. Plants. 2022;11(24):3475. doi: 10.3390/plants11243475.
  • Sureshkumar S, Todesco M, Schneeberger K, et al. A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science. 2009;323(5917):1060–1063. doi: 10.1126/science.1164014.
  • Wang L, Zhang W, Liu S, et al. Rice FLOURY SHRUNKEN ENDOSPERM 5 encodes a putative plant organelle RNA recognition protein that is required for cis-splicing of mitochondrial nad4 intron 1. Rice. 2021;14(1):29. doi: 10.1186/s12284-021-00463-2.
  • Xiong TC, Bourque S, Lecourieux D, et al. Calcium signaling in plant cell organelles delimited by a double membrane. Biochim Biophys Acta. 2006;1763(11):1209–1215. doi: 10.1016/j.bbamcr.2006.09.024.
  • White PJ, Broadley MR. Calcium in plants. Ann Bot. 2003;92(4):487–511. doi: 10.1093/aob/mcg164.
  • Daverkausen-Fischer L, Prols F. Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. J Biol Chem. 2022;298(7):102061. doi: 10.1016/j.jbc.2022.102061.