432
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico analysis of Hsp70 genes in Ctenopharyngodon idella and their expression profiles in response to environmental stresses

, , , , , & ORCID Icon show all
Article: 2245900 | Received 30 Mar 2023, Accepted 02 Aug 2023, Published online: 11 Aug 2023

References

  • Duan Y, Zhang Q, Jiang Y, et al. Dynamic transcriptional landscape of grass carp (Ctenopharyngodon idella) reveals key transcriptional features involved in fish development. Int J Mol Sci. 2022;23(19):11547. doi: 10.3390/ijms231911547.
  • Boyd CE, McNevin AA, Davis RP. The contribution of fisheries and aquaculture to the global protein supply. Food Secur. 2022;14(3):1–11. doi: 10.1007/s12571-021-01246-9.
  • He Y, Yu H, Zhao H, et al. Transcriptomic analysis to elucidate the effects of high stocking density on grass carp (ctenopharyngodon idella). BMC Genomics. 2021;22(1):620. doi: 10.1186/s12864-021-07924-4.
  • Wang Z, Mao Z, Li X, et al. Growth performance, nutritional quality, and immune-related gene expression of the chinese mitten crab (eriocheir sinensis) in pond ecosystem as influenced by stocking density. Fishes. 2022;7(6):362. doi: 10.3390/fishes7060362.
  • He J, Wang J, Xu M, et al. The cooperative expression of heat shock protein 70 KD and 90 KD gene in juvenile larimichthys crocea under Vibrio alginolyticus stress. Fish Shellfish Immunol. 2016;58:359–369. doi: 10.1016/j.fsi.2016.09.049.
  • Dediu L, Docan A, Crețu M, et al. Effects of stocking density on growth performance and stress responses of bester and bester ♀ × beluga ♂ juveniles in recirculating aquaculture systems. Animals (Basel). 2021;11(8):2292. doi: 10.3390/ani11082292.
  • Zhang W, Xu X, Li J, et al. Transcriptomic analysis of the liver and brain in grass carp (ctenopharyngodon idella) under heat stress. Mar Biotechnol (NY). 2022;24(5):856–870. doi: 10.1007/s10126-022-10148-6.
  • Cui Y, Liu B, Xie J, et al. Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (ctenopharyngodon idellus). Fish Physiol Biochem. 2014;40(3):721–729. doi: 10.1007/s10695-013-9879-2.
  • Segnini de Bravo MI, Chung KS. Ecophysiological behavior of caquetaia kraussii (pisces: cichlidae) exposed to different temperatures and salinities. Rev Biol Trop. 2001;49(1):149–156.
  • Dettleff P, Zuloaga R, Fuentes M, et al. High-temperature stress effect on the red cusk-eel (geypterus chilensis) liver: transcriptional modulation and oxidative stress damage. Biology (Basel). 2022;11(7):990. doi: 10.3390/biology11070990.
  • Li X, Liu S, Wang Y, et al. Genomic and transcriptomic landscape and evolutionary dynamics of heat shock proteins in spotted sea bass (lateolabrax maculatus) under salinity change and alkalinity stress. Biology (Basel). 2022;11(3):353. doi: 10.3390/biology11030353.
  • Craig EA, Gross CA. Is hsp70 the cellular thermometer? Trends Biochem Sci. 1991;16(4):135–140. doi: 10.1016/0968-0004(91)90055-z.
  • Deng Z, Sun S, Gao T, et al. The Hsp70 gene family in boleophthalmus pectinirostris: genome-wide identification and expression analysis under high ammonia stress. Animals (Basel). 2019;9(2):36. doi: 10.3390/ani9020036.
  • Wang F, Li D, Chen Q, et al. Genome-wide survey and characterization of the small heat shock protein gene family in bursaphelenchus xylophilus. Gene. 2016;579(2):153–161. doi: 10.1016/j.gene.2015.12.047.
  • Ritossa F. Discovery of the heat shock response. Cell Stress Chaper. 1996;1(2):97–98. doi: 10.1379/1466-1268(1996)001<0097:DOTHSR>2.3.CO;2.
  • Zhang J, Zhang K, Huang J, et al. Schizothorax prenanti heat shock protein 27 gene: cloning, expression, and comparison with other heat shock protein genes after poly (I: c) induction. Animals (Basel). 2022;12(16):2034. doi: 10.3390/ani12162034.
  • Giri SS, Sen SS, Sukumaran V. Role of HSP70 in cytoplasm protection against thermal stress in rohu, labeo rohita. Fish Shellfish Immunol. 2014;41(2):294–299. doi: 10.1016/j.fsi.2014.09.013.
  • Yarahmadi P, Miandare HK, Fayaz S, et al. Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2016;48:43–53. doi: 10.1016/j.fsi.2015.11.007.
  • Liu T, Han Y, Liu Y, et al. Genomewide identification and analysis of heat-shock proteins 70/110 to reveal their potential functions in chinese soft-shelled turtle pelodiscus sinensis. Ecol Evol. 2019;9(12):6968–6985. doi: 10.1002/ece3.5264.
  • Song L, Li C, Xie Y, et al. Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection. Fish Shellfish Immunol. 2016;49:154–162. doi: 10.1016/j.fsi.2015.12.009.
  • Xu K, Xu H, Han Z. Genome-wide identification of Hsp70 genes in the large yellow croaker (larimichthys crocea) and their regulated expression under cold and heat stress. Genes (Basel). 2018;9(12):590. doi: 10.3390/genes9120590.
  • Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29–37. doi: 10.1093/nar/gkr367.
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–4680. doi: 10.1093/nar/22.22.4673.
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi: 10.1093/molbev/msab120.
  • Bailey TL, Boden M, Buske FA, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8. doi: 10.1093/nar/gkp335.
  • Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi: 10.1016/j.molp.2020.06.009.
  • Wang Y, Tang H, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. doi: 10.1093/nar/gkr1293.
  • Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645. doi: 10.1101/gr.092759.109.
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–d612. doi: 10.1093/nar/gkaa1074.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303.
  • Udhaya Kumar S, Balasundaram A, Anu Preethi V, et al. Integrative ontology and pathway-based approach identifies distinct molecular signatures in transcriptomes of esophageal squamous cell carcinoma. Adv Protein Chem Struct Biol. 2022;131:177–206.
  • Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi: 10.1038/nmeth.4197.
  • Kumar G, Hummel K, Razzazi-Fazeli E, et al. Proteome profiles of head kidney and spleen of rainbow trout (Oncorhynchus mykiss). Proteomics. 2018;18(17):e1800101. doi: 10.1002/pmic.201800101.
  • Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (1985). 2002;92(5):2177–2186. doi: 10.1152/japplphysiol.01267.2001.
  • Santacruz H, Vriz S, Angelier N. Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Dev Genet. 1997;21(3):223–233. doi: 10.1002/(SICI)1520-6408(1997)21:3<223::AID-DVG5>3.0.CO;2-9.
  • Günther E, Walter L. Genetic aspects of the hsp70 multigene family in vertebrates. Experientia. 1994;50(11–12):987–1001. doi: 10.1007/BF01923453.
  • Liu J, Liu J, Guo SY, et al. HSP70 inhibitor combined with cisplatin suppresses the cervical cancer proliferation in vitro and transplanted tumor growth: an experimental study. Asian Pac J Trop Med. 2017;10(2):184–188. doi: 10.1016/j.apjtm.2017.01.020.
  • Coto ALS, Seraphim TV, Batista FAH, et al. Structural and functional studies of the Leishmania braziliensis SGT co-chaperone indicate that it shares structural features with HIP and can interact with both Hsp90 and Hsp70 with similar affinities. Int J Biol Macromol. 2018;118(Pt A):693–706. doi: 10.1016/j.ijbiomac.2018.06.123.
  • Celi M, Vazzana M, Sanfratello MA, et al. Elevated cortisol modulates Hsp70 and Hsp90 gene expression and protein in sea bass head kidney and isolated leukocytes. Gen Comp Endocrinol. 2012;175(3):424–431. doi: 10.1016/j.ygcen.2011.11.037.
  • Ma F, Luo L. Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress. PeerJ. 2020;8:e10022. doi: 10.7717/peerj.10022.
  • Liu K, Hao X, Wang Q, et al. Genome-wide identification and characterization of heat shock protein family 70 provides insight into its divergent functions on immune response and development of paralichthys olivaceus. PeerJ. 2019;7:e7781. doi: 10.7717/peerj.7781.
  • Murtha JM, Keller ET. Characterization of the heat shock response in mature zebrafish (Danio rerio). Exp Gerontol. 2003;38(6):683–691. doi: 10.1016/s0531-5565(03)00067-6.
  • Topal A, Özdemir S, Arslan H, et al. How does elevated water temperature affect fish brain? (a neurophysiological and experimental study: assessment of brain derived neurotrophic factor, cFOS, apoptotic genes, heat shock genes, ER-stress genes and oxidative stress genes). Fish Shellfish Immunol. 2021;115:198–204. doi: 10.1016/j.fsi.2021.05.002.