613
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Liquid biopsy: an innovative and reliable method for detecting not only somatic, but also germline mutations in patients with colorectal and non-small cell lung carcinoma

, , , , &
Article: 2249560 | Received 17 Mar 2023, Accepted 15 Aug 2023, Published online: 26 Aug 2023

References

  • Shen Y, Shi R, Zhao R, et al. Clinical application of liquid biopsy in endometrial carcinoma. Med Oncol. 2023;40(3):1. doi: 10.1007/s12032-023-01956-4.
  • Veyseh M, Ricker C, Espenschied C, et al. Secondary germline finding in liquid biopsy of a deceased patient; case report and review of the literature. Front Oncol. 2018;8:259. doi: 10.3389/fonc.2018.00259.
  • Buglyó G, Styk J, Pös O, et al. Liquid biopsy as a source of nucleic acid biomarkers in the diagnosis and management of lynch syndrome. Int J Mol Sci. 2022;23(8):4284. doi: 10.3390/ijms23084284.
  • Esplin ED, Nielsen SM, Bristow SL, et al. Universal germline genetic testing for hereditary cancer syndromes in patients with solid tumor cancer. J Clin Oncol Precis Oncol. 2022;6:e2100516. doi: 10.1200/PO.21.00516.
  • Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022;15(1):131. doi: 10.1186/s13045-022-01351-y.
  • Chang CM, Lin KC, Hsiao NE, et al. Clinical application of liquid biopsy in cancer patients. BMC Cancer. 2022;22(1):413. doi: 10.1186/s12885-022-09525-0.
  • Polatoglou E, Mayer Z, Ungerer V, et al. Isolation and quantification of plasma cell-free DNA using different manual and automated methods. Diagnostics. 2022;12(10):2550. doi: 10.3390/diagnostics12102550.
  • Zhong L, He X, Zhang Y, et al. Relevance of methylenetetrahydrofolate reductase gene variants C677T and A1298C with response to fluoropyrimidine-based chemotherapy in colorectal cancer: a systematic review and meta-analysis. Oncotarget. 2018;9(58):31291–17. doi: 10.18632/oncotarget.24933.
  • Raghubeer S, Matsha TE. Methylenetetrahydrofolate (MTHFR), the one-carbon cycle, and cardiovascular risks. Nutrients. 2021;13(12):4562. doi: 10.3390/nu13124562.
  • Imbard A, Benoist JF, Blom HJ. Neural tube defects, folic acid and methylation. Int J Environ Res Public Health. 2013;10(9):4352–4389. doi: 10.3390/ijerph10094352.
  • Kristensen MH, Pedersen PL, Melsen GV, et al. Variants in the dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase and thymidylate synthase genes predict early toxicity of 5-fluorouracil in colorectal cancer patients. J Int Med Res. 2010;38(3):870–883. doi: 10.1177/147323001003800313.
  • Capitain O, Boisdron-Celle M, Poirier AL, et al. The influence of fluorouracil outcome parameters on tolerance and efficacy in patients with advanced colorectal cancer. Pharmacogenomics J. 2008;8(4):256–267. doi: 10.1038/sj.tpj.6500476.
  • Dean L. Methylenetetrahydrofolate reductase deficiency. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, editors. Medical genetics summaries. Bethesda (MD): National Center for Biotechnology Information (US); 2012.
  • Lee KH, Chang HJ, Han SW, et al. Pharmacogenetic analysis of adjuvant FOLFOX for Korean patients with Colon cancer. Cancer Chemother Pharmacol. 2013;71(4):843–851. doi: 10.1007/s00280-013-2075-3.
  • Fumagalli M, Lecca D, Abbracchio MP, et al. Pathophysiological role of purines and pyrimidines in neurodevelopment: unveiling new pharmacological approaches to congenital brain diseases. Front Pharmacol. 2017;8:941. doi: 10.3389/fphar.2017.00941.
  • Vogel WH, Minhas A, Baumrucker S. Dihydropyrimidine dehydrogenase deficiency: to screen or not to screen? J Adv Pract Oncol. 2020;11(1):68–73. doi: 10.6004/jadpro.2020.11.1.4.
  • Božina N, Bilić I, Ganoci L, et al. DPYD polymorphisms c.496A > G, c.2194G > A and c.85T > C and risk of severe adverse drug reactions in patients treated with fluoropyrimidine-based protocols. Br J Clin Pharmacol. 2022;88(5):2190–2202. doi: 10.1111/bcp.15144.
  • Del Re M, Cinieri S, Michelucci A, et al. DPYD*6 plays an important role in fluoropyrimidine toxicity in addition to DPYD*2A and c.2846A > T: a comprehensive analysis in 1254 patients. Pharmacogenomics J. 2019;19(6):556–563. doi: 10.1038/s41397-019-0077-1.
  • Ruzzo A, Graziano F, Galli F, et al. Dihydropyrimidine dehydrogenase pharmacogenetics for predicting fluoropyrimidine-related toxicity in the randomised, phase III adjuvant TOSCA trial in high-risk Colon cancer patients. Br J Cancer. 2017;117(9):1269–1277. doi: 10.1038/bjc.2017.289.
  • Iachetta F, Bonelli C, Romagnani A, et al. The clinical relevance of multiple DPYD polymorphisms on patients candidate for fluoropyrimidine based-chemotherapy. An Italian case-control study. Br J Cancer. 2019;120(8):834–839. doi: 10.1038/s41416-019-0423-8.
  • Madi A, Fisher D, Maughan TS, et al. Pharmacogenetic analyses of 2183 patients with advanced colorectal cancer; potential role for common dihydropyrimidine dehydrogenase variants in toxicity to chemotherapy. Eur J Cancer. 2018;102:31–39. doi: 10.1016/j.ejca.2018.07.009.
  • Khushman M, Patel GK, Hosein PJ, et al. Germline pharmacogenomics of DPYD*9A (c.85T > C) variant in patients with gastrointestinal malignancies treated with fluoropyrimidines. J Gastrointest Oncol. 2018;9(3):416–424. doi: 10.21037/jgo.2018.02.03.
  • Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 2013;5(10):a012609. doi: 10.1101/cshperspect.a012609.
  • Nasrallah NA, Wiese BM, Sears CR. Xeroderma pigmentosum complementation group C (XPC): emerging roles in non-dermatologic malignancies. Front Oncol. 2022;12:846965. doi: 10.3389/fonc.2022.846965.
  • Zhang Y, Cao J, Meng Y, et al. Overexpression of xeroderma pigmentosum group C decreases the chemotherapeutic sensitivity of colorectal carcinoma cells to cisplatin. Oncol Lett. 2018;15(5):6336–6344. doi: 10.3892/ol.2018.8127.
  • Sakano S, Hinoda Y, Sasaki M, et al. Nucleotide excision repair gene polymorphisms may predict acute toxicity in patients treated with chemoradiotherapy for bladder cancer. Pharmacogenomics. 2010;11(10):1377–1387. doi: 10.2217/pgs.10.106.
  • Blondy S, David V, Verdier M, et al. 5-Fluorouracil resistance mechanisms in colorectal cancer: from classical pathways to promising processes. Cancer Sci. 2020;111(9):3142–3154. doi: 10.1111/cas.14532.
  • Kim SY, Baek JY, Oh JH, et al. A phase II study of preoperative chemoradiation with tegafur-uracil plus leucovorin for locally advanced rectal cancer with pharmacogenetic analysis. Radiat Oncol. 2017;12(1):62. doi: 10.1186/s13014-017-0800-5.
  • Panczyk M. Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. World J Gastroenterol. 2014;20(29):9775–9827. doi: 10.3748/wjg.v20.i29.9775.
  • Griffith M, Mwenifumbo JC, Cheung PY, et al. Novel mRNA isoforms and mutations of uridine monophosphate synthetase and 5-fluorouracil resistance in colorectal cancer. Pharmacogenomics J. 2013;13(2):148–158. doi: 10.1038/tpj.2011.65.
  • Selo MA, Sake JA, Ehrhardt C, et al. Organic cation transporters in the lung-current and emerging (patho)physiological and pharmacological concepts. Int J Mol Sci. 2020;21(23):9168. doi: 10.3390/ijms21239168.
  • Samodelov SL, Kullak-Ublick GA, Gai Z, et al. Organic cation transporters in human physiology, pharmacology, and toxicology. Int J Mol Sci. 2020;21(21):7890. doi: 10.3390/ijms21217890.
  • Chen J, Wang L, Tong G, et al. The SLC22A2 gene is a determinant of hematological toxicity of oxaliplatin in patients with colorectal cancer. Int J Clin Pharmacol Ther. 2023;61(1):1–7. doi: 10.5414/CP204156.
  • Qian CY, Zheng Y, Wang Y, et al. Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients. Chin J Cancer. 2016;35(1):85. doi: 10.1186/s40880-016-0145-8.
  • Lindsey S, Langhans SA. Epidermal growth factor signaling in transformed cells. Int Rev Cell Mol Biol. 2015;314:1–41. doi: 10.1016/bs.ircmb.2014.10.001.
  • Liu W, Wu X, Zhang W, et al. Relationship of EGFR mutations, expression, amplification, and polymorphisms to epidermal growth factor receptor inhibitors in the NCI60 cell lines. Clin Cancer Res. 2007;13(22 Pt 1):6788–6795. doi: 10.1158/1078-0432.CCR-07-0547.
  • Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res. 2007;5(3):203–220. doi: 10.1158/1541-7786.MCR-06-0404.
  • De Pasquale MD, Crocoli A, Caldaro T, et al. Targeting epidermal growth factor receptor (EGFR) in pediatric colorectal cancer. Cancers. 2020;12(2):414. doi: 10.3390/cancers12020414.
  • Wang C, Li Y, Guan Y, et al. [Efficacy and influencing factors of immunotherapy combined with chemotherapy and bevacizumab in patients with non-small cell lung cancer after epidermal growth factor receptor tyrosine kinase inhibitors treatment failure]. Zhonghua Yi Xue Za Zhi. 2023;103(16):1210–1216. Chinese. doi: 10.3760/cma.j.cn112137-20221101-02275.
  • Sui H, Fan ZZ, Li Q. Signal transduction pathways and transcriptional mechanisms of ABCB1/pgp-mediated multiple drug resistance in human cancer cells. J Int Med Res. 2012;40(2):426–435. doi: 10.1177/147323001204000204.
  • Chen Q, Lin W, Yang J, et al. Prognostic value of two polymorphisms, rs1045642 and rs1128503, in ABCB1 following taxane-based chemotherapy: a meta-analysis. Asian Pac J Cancer Prev. 2021;22(1):3–10. doi: 10.31557/APJCP.2021.22.1.3.
  • Singh RR, Reindl KM. Glutathione S-transferases in cancer. Antioxidants. 2021;10(5):701. doi: 10.3390/antiox10050701.
  • Gonzalez-Haba E, García MI, Cortejoso L, et al. ABCB1 gene polymorphisms are associated with adverse reactions in fluoropyrimidine-treated colorectal cancer patients. Pharmacogenomics. 2010;11(12):1715–1723. doi: 10.2217/pgs.10.159.
  • McLeod HL, Sargent DJ, Marsh S, et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American gastrointestinal intergroup trial N9741. J Clin Oncol. 2010;28(20):3227–3233. doi: 10.1200/JCO.2009.21.7943.
  • Stoehlmacher J, Park DJ, Zhang W, et al. A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br J Cancer. 2004;91(2):344–354. doi: 10.1038/sj.bjc.6601975.
  • Joerger M, Huitema AD, Boot H, et al. Germline TYMS genotype is highly predictive in patients with metastatic gastrointestinal malignancies receiving capecitabine-based chemotherapy. Cancer Chemother Pharmacol. 2015;75(4):763–772. doi: 10.1007/s00280-015-2698-7.
  • Li Q, Damish AW, Frazier Z, et al. ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer. Clin Cancer Res. 2019;25(3):977–988. doi: 10.1158/1078-0432.CCR-18-1001.
  • Manuguerra M, Saletta F, Karagas MR, et al. XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review. Am J Epidemiol. 2006;164(4):297–302. doi: 10.1093/aje/kwj189.
  • Sullivan I, Salazar J, Majem M, et al. Pharmacogenetics of the DNA repair pathways in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Lett. 2014;353(2):160–166. doi: 10.1016/j.canlet.2014.07.023.
  • Boige V, Mendiboure J, Pignon JP, et al. Pharmacogenetic assessment of toxicity and outcome in patients with metastatic colorectal cancer treated with LV5FU2, FOLFOX, and FOLFIRI: FFCD 2000-05. J Clin Oncol. 2010;28(15):2556–2564. doi: 10.1200/JCO.2009.25.2106.
  • Huang MY, Fang WY, Lee SC, et al. ERCC2 2251A > C genetic polymorphism was highly correlated with early relapse in high-risk stage II and stage III colorectal cancer patients: a preliminary study. BMC Cancer. 2008;8(1):50. doi: 10.1186/1471-2407-8-50.
  • Siu MK, Kong DS, Chan HY, et al. Paradoxical impact of two folate receptors, FRα and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome. PLoS One. 2012;7(11):e47201. doi: 10.1371/journal.pone.0047201.
  • Huang L, Zhang T, Xie C, et al. SLCO1B1 and SLC19A1 gene variants and irinotecan-induced rapid response and survival: a prospective multicenter pharmacogenetics study of metastatic colorectal cancer. PLoS One. 2013;8(10):e77223. doi: 10.1371/journal.pone.0077223.
  • Pérez-Ramírez C, Cañadas-Garre M, Alnatsha A, et al. Pharmacogenetics of platinum-based chemotherapy: impact of DNA repair and folate metabolism gene polymorphisms on prognosis of non-small cell lung cancer patients. Pharmacogenomics J. 2019;19(2):164–177. doi: 10.1038/s41397-018-0014-8.