272
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Determination of expression level of AP1S1, CDK9, FIGF and HDAC11 genes in bladder tumors for aggressive phenotype characterization

ORCID Icon, , ORCID Icon &
Article: 2253926 | Received 07 Jun 2023, Accepted 28 Aug 2023, Published online: 09 Sep 2023

References

  • Bladder Source: Globocan 2020. 2021. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/30-Bladder-fact-sheet.pdf
  • Zuniga KB, Graff R, Feiger DB, et al. Lifestyle and non-muscle invasive bladder cancer recurrence, progression, and mortality: available research and future directions. Bladder Cancer. 2020;6(1):1–8. doi: 10.3233/blc-190249.
  • National Statistical Institute of Bulgaria. Mortality by causes, sex and statistical regions in 2021. 2022. Available from: https://nsi.bg/en/content/3357/mortality-causes-sex-statistical-regions-and-districts
  • Ploeg M, Aben KK, Kiemeney LA. The present and future burden of urinary bladder cancer in the world. World J Urol. 2009;27(3):289–293. doi: 10.1007/s00345-009-0383-3.
  • Woldu SL, Bagrodia A, Lotan Y. Guideline of guidelines: non-muscle-invasive bladder cancer. BJU Int. 2017;119(3):371–380. doi: 10.1111/bju.13760.
  • Pasin E, Josephson DY, Mitra AP, et al. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol. 2008;10(1):31–43.
  • Lopez-Beltran A, Amin MB, Oliveira PS, et al. Urothelial carcinoma of the bladder, lipid cell variant: clinicopathologic findings and LOH analysis. Am J Surg Pathol. 2010;34(3):371–376. doi: 10.1097/PAS.0b013e3181cd385b.
  • Szarvas T. The diagnostic value of microsatellite LOH analysis and the prognostic relevance of angiogenic gene expression in urinary bladder cancer [article in hungarian]. Magy Onkol. 2009;53(4):385–389. doi: 10.1556/MOnkol.53.2009.4.8.
  • Babjuk M, Burger M, Compérat EM, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ) - 2019 update. Eur Urol. 2019;76(5):639–657. doi: 10.1016/j.eururo.2019.08.016.
  • van Rhijn BW, van der Poel HG, van der Kwast TH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 2005;47(6):736–748. doi: 10.1016/j.eururo.2005.03.014.
  • Dyrskjot L, Thykjaer T, Kruhoffer M, et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet. 2003;33(1):90–96. doi: 10.1038/ng1061.
  • Thykjaer T, Workman C, Kruhoffer M, et al. Identification of gene expression patterns in superficial and invasive human bladder cancer. Cancer Res. 2001;61(6):2492–2499.
  • Sanchez-Carbayo M, Socci ND, Lozano JJ, et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol. 2003;163(2):505–516. doi: 10.1016/S0002-9440(10)63679-6.
  • Sanchez-Carbayo M, Socci ND, Charytonowicz E, et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res. 2002;62(23):6973–6980.
  • Antonova O, Mladenov B, Rangelov S, et al. Expression profiling of muscle invasive and non-invasive bladder tumors for biomarkers identification related to drug resistance, sensitivity and tumor progression. Biotechnol Biotechnol Equip. 2020;34(1):506–514. doi: 10.1080/13102818.2020.1778528.
  • Yordanova Z, Stoimenov N, Boyanova O, et al. The long way from science to innovation – a research approach for creating an innovation project methodology. In: Abramowicz W, Corchuelo R, editors. Business information systems. BIS. Lecture notes in business information processing. Cham: Springer; 2019.
  • Cumberbatch MG, Jubber I, Black PC, et al. Epidemiology of bladder cancer: a systematic review and contemporary update of risk factors in 2018. Eur Urol. 2018;74(6):784–795. doi: 10.1016/j.eururo.2018.09.001.
  • Sen S, Bhojnagarwala P, Francey L, et al. p53 mutagenesis by benzo[a]pyrene derived radical cations. Chem Res Toxicol. 2012;25(10):2117–2126. doi: 10.1021/tx300201p.
  • Xue J, Yang S, Seng S. Mechanisms of cancer induction by Tobacco-Specific NNK and NNN. Cancers (Basel). 2014;6(2):1138–1156. doi: 10.3390/cancers6021138.
  • Wild PJ, Fuchs T, Stoehr R, et al. Detection of urothelial bladder cancer cells in voided urine can be improved by a combination of cytology and standardized microsatellite analysis. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1798–1806. doi: 10.1158/1055-9965.EPI-09-0099.
  • Mairinger FD, Walter RF, Werner R, et al. Activation of angiogenesis differs strongly between pulmonary carcinoids and neuroendocrine carinomas and is crucial for carcinoid tumourgenesis. J Cancer. 2014;5(6):465–471. doi: 10.7150/jca.9235.
  • Ji L, Zheng Z, Shi L, et al. Andrographolide decreased VEGFD expression in hepatoma cancer cells by inducing ubiquitin/proteasome-mediated cFos protein degradation. Biochim Biophys Acta. 2015;1850(4):750–758. doi: 10.1016/j.bbagen.2015.01.005.
  • Bellan C, De Falco G, Lazzi S, et al. CDK9/CYCLIN T1 expression during normal lymphoid differentiation and malignant transformation. J Pathol. 2004;203(4):946–952. doi: 10.1002/path.1588.
  • De Falco G, Giordano A. CDK9: from basal transcription to cancer and AIDS. Cancer Biol Ther. 2002;1(4):342–347.
  • Mohapatra S, Chu B, Zhao X, et al. Apoptosis of metastatic prostate cancer cells by a combination of cyclin-dependent kinase and AKT inhibitors. Int J Biochem Cell Biol. 2009;41(3):595–602. doi: 10.1016/j.biocel.2008.07.013.
  • Walsby E, Pratt G, Shao H, et al. A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget. 2014;5(2):375–385. doi: 10.18632/oncotarget.1568.
  • Wang J, Dean DC, Hornicek FJ, et al. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in ovarian cancer. Faseb J. 2019;33(5):5990–6000. doi: 10.1096/fj.201801789RR.
  • Li X, Seebacher NA, Xiao T, et al. Targeting regulation of cyclin dependent kinase 9 as a novel therapeutic strategy in synovial sarcoma. J Orthop Res. 2019;37(2):510–521. doi: 10.1002/jor.24189.
  • Ma H, Seebacher NA, Hornicek FJ, et al. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine. 2019;39:182–193. doi: 10.1016/j.ebiom.2018.12.022.
  • Eyvazi S, Hejazi MS, Kahroba H, et al. CDK9 as an appealing target for therapeutic interventions. Curr Drug Targets. 2019;20(4):453–464. doi: 10.2174/1389450119666181026152221.
  • Franco LC, Morales F, Boffo S, et al. CDK9: a key player in cancer and other diseases. J Cell Biochem. 2018;119(2):1273–1284. doi: 10.1002/jcb.26293.
  • Loidl P. Towards an understanding of the biological function of histone acetylation. FEBS Lett. 1988;227(2):91–95. doi: 10.1016/0014-5793(88)80874-3.
  • Deubzer HE, Schier MC, Oehme I, et al. HDAC11 is a novel drug target in carcinomas. Int J Cancer. 2013;132(9):2200–2208. doi: 10.1002/ijc.27876.
  • Tsvetkova RS. Characteristics of methylation disorders in the genome of patients with Balkan endemic nephropathy. PhD Thesis [In Bulgarian], Medical University of Sofia, Sofia (Bulgaria). 2014, p. 322.
  • Kocic G, Cukuranovic J, Stoimenov TJ, et al. Global and specific histone acetylation pattern in patients with Balkan endemic nephropathy, a worldwide disease. Ren Fail. 2014;36(7):1078–1082. doi: 10.3109/0886022X.2014.917562.