583
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of taxane production in cell suspension culture of Corylus avellana L. Kalınkara by elicitation and precursor feeding

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2255703 | Received 03 May 2023, Accepted 01 Sep 2023, Published online: 02 Oct 2023

References

  • Mekhail TM, Markman M. Paclitaxel in cancer therapy. Expert Opin Pharmacother. 2002; 3(6):1–9. doi: 10.1517/14656566.3.6.755.
  • Zhang D, Yang R, Wang S, et al. Paclitaxel: new uses for an old drug. Drug Des Devel Ther. 2014;8:279–284. doi: 10.2147/DDDT.S56801.
  • Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277(5698):665–667. doi: 10.1038/277665a0.
  • Weaver BA. How taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677–2681. doi: 10.1091/mbc.E14-04-0916.
  • Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93(9):2325–2327. doi: 10.1021/ja00738a045.
  • Cragg GM, Schepartz SA, Suffness M, et al. The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J Nat Prod. 1993;56(10):1657–1668. doi: 10.1021/np50100a001.
  • Howat S, Park B, Oh IS, et al. Paclitaxel: biosynthesis, production and future prospects. New Biotechnol. 2014;31(3):242–245. doi: 10.1016/j.nbt.2014.02.010.
  • Kundu S, Jha S, Ghosh B. Metabolic engineering for improving production of taxol. In: Jha S, editor. Transgenesis and secondary metabolism. Reference series in phytochemistry. New York: Springer, Cham; 2017.
  • Croteau R, Ketchum RE, Long RM, et al. Taxol biosynthesis and molecular genetics. Phytochem Rev. 2006;5(1):75–97. doi: 10.1007/s11101-005-3748-2.
  • McElroy C, Jennewein S. Taxol® biosynthesis and production: from forests to fermenters. In: Schwab W, Lange B, Wüst M, editors. Biotechnology of natural products. New York: Springer, Cham; 2018. doi: 10.1007/978-3-319-67903-7_7.
  • Sanchez-Muñoz R, Perez-Mata E, Almagro L, et al. A novel hydroxylation step in the taxane biosynthetic pathway: a new approach to paclitaxel production by synthetic biology. Front Bioeng Biotechnol. 2020;8:410. doi: 10.3389/fbioe.2020.00410.
  • Escrich A, Almagro L, Moyano E, et al. Improved biotechnological production of paclitaxel in taxus media cell cultures by the combined action of coronatine and calix[8]arenes. Plant Physiol Biochem. 2021;163:68–75. doi: 10.1016/j.plaphy.2021.03.047.
  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta. 2018;248(1):1–18. doi: 10.1007/s00425-018-2910-1.
  • Farhadi S, Moieni A, Safaie N, et al. Fungal cell wall and methyl-β-Cyclodextrin synergistically enhance paclitaxel biosynthesis and secretion in Corylus avellana cell suspension culture. Sci Rep. 2020;10(1):5427. doi: 10.1038/s41598-020-62196-4.
  • Salehi M, Moieni A, Safaie N, et al. Whole fungal elicitors boost paclitaxel biosynthesis induction in corylus avellana cell culture. PLoS One. 2020;15(7):e0236191. doi: 10.1371/journal.pone.0236191.
  • Gallego A, Malik S, Yousefzadi M, et al. Taxol from Corylus avellana: paving the way for a new source of this anti-cancer drug. Plant Cell Tiss Organ Cult. 2017;129(1):1–16. doi: 10.1007/s11240-016-1164-5.
  • Malik S, Cusidó RM, Mirjalili MH, et al. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem. 2011;46(1):23–34. doi: 10.1016/j.procbio.2010.09.004.
  • Liu WC, Gong T, Zhu P. Advances in exploring alternative taxol sources. RSC Adv. 2016;6(54):48800–48809. doi: 10.1039/C6RA06640B.
  • Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, et al. A compressive review about taxol®: history and future challenges. Molecules. 2020;25(24):5986. doi: 10.3390/molecules25245986.
  • Nižnanský Ľ, Osinová D, Kuruc R, et al. Natural taxanes: from plant composition to human pharmacology and toxicity. Int J Mol Sci. 2022;23(24):15619. doi: 10.3390/ijms232415619.
  • Ramirez-Estrada K, Osuna L, Moyano E, et al. Changes in gene transcription and taxane production in elicited cell cultures of taxus × media and Taxus globosa. Phytochemistry. 2015;117:174–184. doi: 10.1016/j.phytochem.2015.06.013.
  • Perez-Matas E, Hanano A, Moyano E, et al. Insights into the control of taxane metabolism: molecular, cellular, and metabolic changes induced by elicitation in Taxus baccata cell suspensions. Front Plant Sci. 2022;13:942433. doi: 10.3389/fpls.2022.942433.
  • Ohtsu H, Nakanishi Y, Bastow KF, et al. Antitumor agents 216. Synthesis and evaluation of paclitaxel-camptothecin conjugates as novel cytotoxic agents. Bioorg Med Chem. 2003;11(8):1851–1857. doi: 10.1016/s0968-0896(03)00040-3.
  • Helson L. Cephalomannine and 10-deacetyltaxol cytotoxicity in human glial and neuroblastoma cell-lines. Int J Oncol. 1993;2(2):297–299.
  • Zhang RY, Liu ZK, Wei D, et al. UBE2S interacting with TRIM28 in the nucleus accelerates cell cycle by ubiquitination of p27 to promote hepatocellular carcinoma development. Signal Transduct Target Ther. 2021;6(1):64. doi: 10.1038/s41392-020-00432-z.
  • Peng S, Chen X, Huang C, et al. UBE2S as a novel ubiquitinated regulator of p16 and β-catenin to promote bone metastasis of prostate cancer. Int J Biol Sci. 2022;18(8):3528–3543. doi: 10.7150/ijbs.72629.
  • Qiao Z, Kondo T. Identification of cephalomannine as a drug candidate for glioblastoma via high-throughput drug screening. J Electrophor. 2018;62(1):17–20. doi: 10.2198/jelectroph.62.17.
  • Ullah A, Leong SW, Wang J, et al. Cephalomannine inhibits hypoxia-induced cellular function via the suppression of APEX1/HIF-1α interaction in lung cancer. Cell Death Dis. 2021;12(5):490. doi: 10.1038/s41419-021-03771-z.
  • Dell’Anno I, Melani A, Martin SA, et al. Drug screening revealed novel potential agents against malignant pleural mesothelioma. Cancers (Basel). 2022;14(10):2527. doi: 10.3390/cancers14102527.
  • Hoffman A, Khan W, Worapong J, et al. Bioprospecting for taxol in angiosperm plant extracts. Spectroscopy. 1998;13(6):22–32.
  • Ottaggio L, Bestoso F, Armirotti A, et al. Taxanes from shells and leaves of Corylus avellana. J Nat Prod. 2008;71(1):58–60. doi: 10.1021/np0704046.
  • Kutlutürk GZ. Türkiye’de Yetişen Findik (Corylus avellana L.) Çeşitlerinde Antikanser Taksanlarin Analizi. [Yüksek Lisans Tezi]. Istanbul: İstanbul Üniversitesi Fen Bilim Enstitüsü; 2019.
  • Bestoso F, Ottaggio L, Armirotti A, et al. In vitro cell cultures obtained from different explants of corylus avellana produce taxol and taxanes. BMC Biotechnol. 2006;6(1):45. doi: 10.1186/1472-6750-6-45.
  • Miele M, Mumot AM, Zappa A, et al. Hazel and other sources of paclitaxel and related compounds. Phytochem Rev. 2012;11(2-3):211–225. doi: 10.1007/s11101-012-9234-8.
  • Gallego A, Bonfill M, Cusido RM, et al. Assessing factors that affect the growth of Corylus avellana cell suspension cultures: a statistical approach. In Vitro Cell DevBiol-Plant. 2015;51(5):530–538. doi: 10.1007/s11627-015-9693-x.
  • Gallego A, Imseng N, Bonfill M, et al. Development of a hazel cell culture-based paclitaxel and baccatin III production process on a benchtop scale. J Biotechnol. 2015;195:93–102. doi: 10.1016/j.jbiotec.2014.12.023.
  • Rahpeyma SA, Moieni A, Jalali Javaran M. Paclitaxel production is enhanced in suspension-cultured hazel (Corylus avellana L.) cells by using a combination of sugar, precursor, and elicitor. Eng Life Sci. 2015;15(2):234–242. doi: 10.1002/elsc.201400115.
  • Salehi M, Moieni A, Safaie N. A novel medium for enhancing callus growth of hazel (Corylus avellana L.). Sci Rep. 2017;7(1):15598. doi: 10.1038/s41598-017-15703-z.
  • Salehi M, Moieni A, Safaie N, et al. Elicitors derived from endophytic fungi Chaetomium globosum and Paraconiothyrium brasiliense enhance paclitaxel production in Corylus avellana cell suspension culture. Plant Cell Tiss Organ Cult. 2019;136(1):161–171. doi: 10.1007/s11240-018-1503-9.
  • Gantait S, Mukherjee E. Hairy root culture technology: applications, constraints and prospect. Appl Microbiol Biotechnol. 2021;105(1):35–53. doi: 10.1007/s00253-020-11017-9.
  • Mutanda I, Li J, Xu F, et al. Recent advances in metabolic engineering, protein engineering, and transcriptome-guided insights toward synthetic production of taxol. Front Bioeng Biotechnol. 2021;9:632269. doi: 10.3389/fbioe.2021.632269.
  • Baenas N, García-Viguera C, Moreno DA. Elicitation: a tool for enriching the bioactive composition of foods. Molecules. 2014;19(9):13541–13563. doi: 10.3390/molecules190913541.
  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, et al. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules. 2016;21(2):182. doi: 10.3390/molecules21020182.
  • Narayani M, Srivastava S. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev. 2017;16(6):1227–1252. doi: 10.1007/s11101-017-9534-0.
  • Halder M, Sarkar S, Jha S. Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci. 2019;19(12):880–895. doi: 10.1002/elsc.201900058.
  • Salehi M, Naghavi MR, Bahmankar M. A review of ferula species: biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind Crops Prod. 2019;139:111511. doi: 10.1016/j.indcrop.2019.111511.
  • Cardillo AB, Perassolo M, Giulietti AM, et al. Cyclodextrins: a tool in plant cell and organ culture bioprocesses for the production of secondary metabolites. Plant Cell Tiss Organ Cult. 2021;146(1):1–19. doi: 10.1007/s11240-021-02045-y.
  • Furmanowa M, Olędzka H, Sykłowska-Baranek K, et al. Increased taxane accumulation in callus cultures of Taxus cuspidata and taxus × media by some elicitors and precursors. Biotechnol Lett. 2000;22(18):1449–1452. doi: 10.1023/A:1005611114628.
  • Bemani E, Ghanati F, Rezaei A, et al. Effect of phenylalanine on taxol production and antioxidant activity of extracts of suspension-cultured hazel (Corylus avellana L.) cells. J Nat Med. 2013;67(3):446–451. doi: 10.1007/s11418-012-0696-1.
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x.
  • Fett-Neto AG, DiCosmo F, Reynolds WF, et al. Cell culture of taxus as a source of the antineoplastic drug taxol and related taxanes. Biotechnology (NY). 1992;10(12):1572–1575. doi: 10.1038/nbt1292-1572.
  • Perez-Matas E, Hidalgo-Martinez D, Escrich A, et al. Genetic approaches in improving biotechnological production of taxanes: an update. Front Plant Sci. 2023;14:1100228. doi: 10.3389/fpls.2023.1100228.
  • Sofias AM, Dunne M, Storm G, et al. The battle of “nano” paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30. doi: 10.1016/j.addr.2017.02.003.
  • Kochkin DV, Demidova EV, Globa EB, et al. Profiling of taxoid compounds in plant cell cultures of different species of yew (Taxus spp.). Molecules. 2023;28(5):2178. doi: 10.3390/molecules28052178.
  • FAO. FAOSTAT; [cited 2023 March 7]. Available from: https://www.fao.org/3/x4484e/x4484e03.htm.
  • Islam A. Hazelnut culture in Turkey. Akademik Ziraat Ders. 2018;7(2):259–266. doi: 10.29278/azd.476665.
  • Hoffman A, Shahidi F. Paclitaxel and other taxanes in hazelnut. J Funct Foods. 2009;1(1):33–37. doi: 10.1016/j.jff.2008.09.004.
  • Cusido RM, Onrubia M, Sabater-Jara AB, et al. A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv. 2014;32(6):1157–1167. doi: 10.1016/j.biotechadv.2014.03.002.
  • Sabater-Jara AB, Onrubia M, Moyano E, et al. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in taxus x media cell cultures. Plant Biotechnol J. 2014;12(8):1075–1084. doi: 10.1111/pbi.12214.
  • Onrubia M, Moyano E, Bonfill M, et al. Coronatine, a more powerful elicitor for inducing taxane biosynthesis in taxus media cell cultures than methyl jasmonate. J Plant Physiol. 2013;170(2):211–219. doi: 10.1016/j.jplph.2012.09.004.
  • Cappellari LDR, Santoro MV, Schmidt A, et al. Induction of essential oil production in Mentha x piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. Plant Physiol Biochem. 2019;141:142–153. doi: 10.1016/j.plaphy.2019.05.030.
  • Li Y, Chen X, Wang J, et al. Two responses to MeJA induction of R2R3-MYB transcription factors regulate flavonoid accumulation in Glycyrrhiza uralensis fisch. PLoS One. 2020;15(7):e0236565. doi: 10.1371/journal.pone.0236565.
  • Zheng XY, Lin TW, Du JF, et al. A novel method for ginkgolide biosynthesis elucidation based on MeJA induction and differential metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1176:122758. doi: 10.1016/j.jchromb.2021.122758.
  • Andi SA, Gholami M, Ford CM, et al. The effect of light, phenylalanine and methyl jasmonate, alone or in combination, on growth and secondary metabolism in cell suspension cultures of Vitis vinifera. J Photochem Photobiol B. 2019;199:111625. doi: 10.1016/j.jphotobiol.2019.111625.
  • Arano-Varela H, Cruz-Sosa F, Estrada-Zúñiga ME, et al. Effects of phenylalanine and methyl jasmonate on verbascoside production in Buddleja cordata kunth cell suspension cultures. S Afr J Bot. 2020;135:41–49. doi: 10.1016/j.sajb.2020.08.005.
  • Li YP, Tang DB, Wang XQ, et al. Development of Origanum vulgare cell suspension culture to produce polyphenols and the stimulation effect of salicylic acid elicitation and phenylalanine feeding. Biotechnol Bioproc E. 2021;26(3):456–467. doi: 10.1007/s12257-020-0193-4.
  • Bamneshin M, Mirjalili MH, Naghavi MR, et al. Gene expression pattern and taxane biosynthesis in a cell suspension culture of Taxus baccata L. subjected to light and a phenylalanine ammonia lyase (PAL) inhibitor. J Photochem Photobiol B. 2022;234:112532. doi: 10.1016/j.jphotobiol.2022.112532.
  • Sykłowska-Baranek K, Sygitowicz G, Maciejak-Jastrzębska A, et al. Application of priming strategy for enhanced paclitaxel biosynthesis in taxus × media hairy root cultures. Cells. 2022;11(13):2062. doi: 10.3390/cells11132062.