338
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microsatellite unstable colorectal cancers are associated with increased CD1a- and CD83-positive dendritic cell infiltration

, , , , &
Article: 2266517 | Received 11 Jul 2023, Accepted 29 Sep 2023, Published online: 12 Oct 2023

References

  • Orsini G, Legitimo A, Failli A, et al. Defective generation and maturation of dendritic cells from monocytes in colorectal cancer patients during the course of disease. Int J Mol Sci. 2013;14(11):1–15. doi: 10.3390/ijms141122022.
  • Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20. doi: 10.1111/imm.12888.
  • Ma Y, Shurin GV, Peiyuan Z, et al. Dendritic cells in the cancer microenvironment. J Cancer. 2013;4(1):36–44. doi: 10.7150/jca.5046.
  • Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity. 2014;40(5):642–656. doi: 10.1016/j.immuni.2014.04.016.
  • Segura E, Valladeau-Guilemond J, Donnadieu MH, et al. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med. 2012;209(4):653–660. doi: 10.1084/jem.20111457.
  • Nizzoli G, Krietsch J, Weick A, et al. Human Cd1c + dendritic cells secrete high levels of Il-12 and potently prime cytotoxic T-Cell responses. Blood. 2013;122(6):932–942. doi: 10.1182/blood-2013-04-495424.
  • Lucarini V, Melaiu O, Tempora P, et al. Dendritic cells: behind the scenes of T-Cell infiltration into the tumor microenvironment. Cancers (Basel). 2021;13(3):433. doi: 10.3390/cancers13030433.
  • Haniffa M, Shin A, Bigley V, et al. Human tissues contain Cd141hi Cross-Presenting dendritic cells with functional homology to mouse Cd103+ nonlymphoid dendritic cells. Immunity. 2012;37(1):60–73. doi: 10.1016/j.immuni.2012.04.012.
  • Jongbloed SL, Kassianos AJ, McDonald KJ, et al. Human Cd141+ (bdca-3)+ dendritic cells (dcs) represent a unique myeloid Dc subset that Cross-Presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–1260. doi: 10.084/jem.20092140.
  • Leal Rojas IM, Mok WH, Pearson FE, et al. Human blood Cd1c(+) dendritic cells promote Th1 and Th17 effector function in memory Cd4(+) T cells. Front Immunol. 2017;8:971. doi: 10.3389/fimmu.2017.00971.
  • Lou Y, Liu C, Kim GJ, et al. Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol. 2007;178(3):1534–1541. doi: 10.4049/jimmunol.178.3.1534.
  • Villadangos JA, Young L. Antigen-presenting properties of pasmacytoid dendritic cells. Immunity. 2008;29(3):352–361. doi: 10.1016/j.immuni.2008.09.002.
  • Bonaccorsi I, Pezzino G, Morandi B, et al. Drag cells in immunity: plasmacytoid dcs dress up as cancer cells. Oncoimmunology. 2014;3(3):e28184. doi: 10.4161/onci.28184.
  • Verneau J, Sautes-Fridman C, Sun CM. Dendritic cells in the tumor microenvironment: prognostic and theranostic impact. Semin Immunol. 2020;48:101410. doi: 10.1016/j.smim.2020.101410.
  • Pena-Romero AC, Orenes-Pinero E. Dual effect of immune cells within tumour microenvironment: pro- and anti-tumour effects and their triggers. Cancers. 2022;14(7):1681. doi: 10.3390/cancers14071681.
  • Gulubova MV, Ananiev JR, Vlaykova TI, et al. Role of dendritic cells in progression and clinical outcome of Colon cancer. Int J Colorectal Dis. 2012;27(2):159–169. doi: 10.1007/s00384-011-1334-1.
  • Michielsen AJ, Noonan S, Martin P, et al. Inhibition of dendritic cell maturation by the tumor microenvironment correlates with the survival of colorectal cancer patients following bevacizumab treatment. Mol Cancer Ther. 2012;11(8):1829–1837. doi: 10.158/535-7163.MCT-12-0162.
  • Gulubova M, Manolova I, Cirovski G, et al. Recruitment of dendritic cells in human liver with metastases. Clin Exp Metastasis. 2008;25(7):777–785. doi: 10.1007/s10585-008-9191-1.
  • Noubade R, Majri-Morrison S, Tarbell KV. Beyond Cdc1: emerging roles of Dc crosstalk in cancer immunity. Front Immunol. 2019;10:1014. doi: 10.3389/fimmu.2019.01014.
  • Deschoolmeester V, Baay M, Lardon F, et al. Immune cells in colorectal cancer: prognostic relevance and role of MSI. Cancer Microenviron. 2011;4(3):377–392. doi: 10.1007/s12307-011-0068-5.
  • Boissière-Michot F, Lazennec G, Frugier H, et al. Characterization of an adaptive immune response in microsatellite-instable colorectal cancer. Oncoimmunology. 2014;3(6):e29256. doi: 10.4161/onci.29256.
  • Pawlik TM, Raut CP, Rodriguez-Bigas MA. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis Markers. 2004;20(4-5):199–206. doi: 10.1155/2004/368680.
  • Sahin IH, Akce M, Alese O, et al. Immune checkpoint inhibitors for the treatment of MSI-H/Mmr-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer. 2019;121(10):809–818. doi: 10.1038/s41416-019-0599-y.
  • Walkowska J, Kallemose T, Jönsson G, et al. Immunoprofiles of colorectal cancer from lynch syndrome. Oncoimmunology. 2019;8(1):e1515612. doi: 10.1080/2162402X.2018.1515612.
  • Toor SM, Sasidharan Nair V, Murshed K, et al. Tumor-Infiltrating lymphoid cells in colorectal cancer patients with varying disease stages and microsatellite Instability-High/stable tumors. Vaccines (Basel). 2021;9(1):64. doi: 10.3390/vaccines9010064.
  • Gulubova MV, Chonov DC, Ivanova KV, et al. Intratumoural expression of Il-6/Stat3, Il-17 and Foxp3 immune cells in the immunosuppressive tumour microenvironment of colorectal cancer immune Cells-Positive for Il-6, Stat3, Il-17 and Foxp3 and colorectal cancer development. Biotech Biotech Equip. 2022;36(1):327–338. doi: 10.1080/13102818.2022.2072765.
  • Vlaykova T, Mitkova A, Stancheva G, et al. Microsatellite instability and promoter hypermethylation of Mlh1 and Msh2 in patients with sporadic colorectal cancer. J Buon. 2011;16(2):265–273. PMID: 21766496.
  • Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options Oncol. 2015;16(7):30. doi: 10.1007/s11864-015-0348-2.
  • Fujiyoshi K, Yamaguchi T, Kakuta M, et al. Predictive model for High-Frequency microsatellite instability in colorectal cancer patients over 50в years of age. Cancer Med. 2017;6(6):1255–1263. doi: 10.002/cam4.088.
  • Ivanova K, Stoyanov S, Vlaykova T, et al. [Microsatellite instability and survival in patients with endometrial cancer.]. Akush Ginekol (Sofiia). 2016;55(5):21–28. Bulgarian. PMID: 29790711.
  • Dahlin AM, Henriksson ML, Van Guelpen B, et al. Colorectal cancer prognosis depends on T-Cell infiltration and molecular characteristics of the tumor. Mod Pathol. 2011;24(5):671–682. doi: 10.1038/modpathol.2010.234.
  • Soliman NA, Morsia DF, Helmy NAH. Immunohistochemical expression of MMR proteins with clinicopathological correlation in colorectal cancer in Egypt. Open Access Maced J Med Sci. 2019;7(10):1608–1617. doi: 10.3889/oamjms.2019.357.
  • Gunnarsson U, Strigård K, Edin S, et al. Association between local immune cell infiltration, mismatch repair status and systemic inflammatory response in colorectal cancer. J Transl Med. 2020;18(1):178. doi: 10.1186/s12967-020-02336-6.
  • Hillenbrand EE, Neville AM, Coventry BJ. Immunohistochemical localization of Cd1a-positive putative dendritic cells in human breast tumours. Br J Cancer. 1999;79(5-6):940–944. doi: 10.1038/sj.bjc.6690150.
  • Sandel MH, Dadabayev AR, Menon AG, et al. Prognostic value of Tumor-Infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res. 2005;11(7):2576–2582. doi: 10.1158/078-0432.CCR-04-1448.
  • Yuan A, Steigen SE, Goll R, et al. Dendritic cell infiltration pattern along the colorectal adenoma-carcinoma sequence. APMIS. 2008;116(6):445–456. PMID: 18754318.
  • Legitimo A, Consolini R, Failli A, et al. Dendritic cell defects in the colorectal cancer. Hum Vaccin Immunother. 2014;10(11):3224–3235. doi: 10.4161/hv.29857.
  • Yoo HJ, Kim NY, Kim JH. Current understanding of the roles of Cd1a-Restricted T cells in the immune system. Mol Cells. 2021;44(5):310–317. doi: 10.14348/molcells.2021.0059.
  • Chandra R, Karalis JD, Liu C, et al. The colorectal cancer tumor microenvironment and its impact on liver and lung metastasis. Cancers (Basel). 2021;13(24):6206. doi: 10.3390/cancers13246206.
  • Goc J, Germain C, Vo-Bourgais TK, et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating Cd8+ T cells. Cancer Res. 2014;74(3):705–715. doi: 10.1158/0008-5472.CAN-13-1342.
  • Kießler M, Plesca I, Sommer U, et al. Tumor-Infiltrating plasmacytoid dendritic cells are associated with survival in human Colon cancer. J Immunother Cancer. 2021;9(3):e001813. doi: 10.1136/jitc-2020-001813.
  • Subtil B, Cambi A, Tauriello DVF, et al. The therapeutic potential of tackling tumor-induced dendritic cell dysfunction in colorectal cancer. Front Immunol. 2021;12:724883. doi: 10.3389/fimmu.2021.724883.
  • Nagorsen D, Voigt S, Berg E, et al. Tumor-Infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med. 2007;5(1):62. doi: 10.1186/479-5876-5-62.
  • Michielsen AJ, Hogan AE, Marry J, et al. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One. 2011;6(11):e27944. doi: 10.1371/journal.pone.0027944.
  • Kashimura S, Saze Z, Terashima M, et al. Cd83(+) dendritic cells and Foxp3(+) regulatory T cells in primary lesions and regional lymph nodes are inversely correlated with prognosis of gastric cancer. Gastric Cancer. 2012;15(2):144–153. doi: 10.1007/s10120-011-0090-9.
  • Inoue Y, Nakayama Y, Minagawa N, et al. Relationship between interleukin-12-expressing cells and antigen-presenting cells in patients with colorectal cancer. Anticancer Res. 2005;25(5):3541–3546. PMID: 16101177.
  • Pryczynicz A, Cepowicz D, Zaręba K, et al. Dysfunctions in the mature dendritic cells are associated with the presence of metastases of colorectal cancer in the surrounding lymph nodes. Gastroenterol Res Pract. 2016;2016:2405435–2405437. doi: 10.1155/2016/2405437.
  • Morrissey ME, Byrne R, Nulty C, et al. The tumour microenvironment of the upper and lower gastrointestinal tract differentially influences dendritic cell maturation. BMC Cancer. 2020;20(1):566. doi: 10.1186/s12885-020-07012-y.
  • Lee H, Lee HJ, Song IH, et al. Cd11c-positive dendritic cells in triple-negative breast cancer. In Vivo. 2018;32(6):1561–1569. doi: 10.21873/invivo.11415.
  • Gulubova M. Myeloid and plasmacytoid dendritic cells and cancer: new insights. Open Access Maced J Med Sci. 2019;7(19):3324–3340. doi: 10.889/oamjms.2019.735.
  • Gessani S, Belardelli F. Immune dysfunctions and immunotherapy in colorectal cancer: the role of dendritic cells. Cancers (Basel). 2019;11(10):1491. doi: 10.3390/cancers11101491.
  • Mathan TS, Figdor CG, Buschow SI. Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol. 2013;4:372. doi: 10.3389/fimmu.2013.00372.
  • Cruickshank SM, English NR, Felsburg PJ, et al. Characterization of colonic dendritic cells in normal and colitic mice. World J Gastroenterol. 2005;11(40):6338–6347. doi: 10.3748/wjg.v11.i40.6338.
  • Reschner A, Hubert P, Delvenne P, et al. Innate lymphocyte and dendritic cell cross-talk: a key factor in the regulation of the immune response. Clin Exp Immunol. 2008;152(2):219–226. doi: 10.1111/j.365-2249.008.03624.x.
  • Perez L, Shurin MR, Collins B, et al. Comparative analysis of Cd1a, S-100, Cd83, and Cd11c human dendritic cells in normal, premalignant, and malignant tissues. Histol Histopathol. 2005;20(4):1165–1172. doi: 10.14670/HH-20.1165.
  • Håkansson L, Adell G, Boeryd B, et al. Infiltration of mononuclear inflammatory cells into primary colorectal carcinomas: an immunohistological analysis. Br J Cancer. 1997;75(3):374–380. doi: 10.1038/bjc.997.61.
  • Gai XD, Li C, Song Y, et al. In situ analysis of Foxp3(+) regulatory T cells and myeloid dendritic cells in human colorectal cancer tissue and Tumor-Draining lymph node. Biomed Rep. 2013;1(2):207–212. doi: 10.3892/br.2012.35.
  • Shurin GV, Ma Y, Shurin MR. Immunosuppressive mechanisms of regulatory dendritic cells in cancer. Cancer Microenviron. 2013;6(2):159–167. doi: 10.1007/s12307-013-0133-3.
  • Maby P, Tougeron D, Hamieh M, et al. Correlation between density of Cd8+ T-Cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 2015;75(17):3446–3455. doi: 10.1158/0008-5472.CAN-14-3051.
  • Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn. 2008;10(4):293–300. doi: 10.2353/jmoldx.008.080031.
  • Kim JH, Kang GH. Molecular and prognostic heterogeneity of microsatellite-unstable colorectal cancer. World J Gastroenterol. 2014;20(15):4230–4243. doi: 10.3748/wjg.v20.i15.4230.
  • Chang L, Chang M, Chang HM, et al. Expending role of microsatellite instability in diagnosis and treatment of colorectal cancers. J Gastrointest Cancer. 2017;48(4):305–313. doi: 10.1007/s12029-017-9991-0.
  • Bai Z, Zhou Y, Ye Z, et al. Tumor-infiltrating lymphocytes in colorectal cancer: the fundamental indication and application on immunotherapy. Front Immunol. 2021;12:808964. eCollection 2021. doi: 10.3389/fimmu.2021.808964.
  • Kołos M, Wasążnik-Jędras A, Nasierowska-Guttmejer A. Can the histological type of colorectal cancer determine the carcinogenesis pathway? Pol J Pathol. 2015;66(2):109–120. doi: 10.5114/pjp.2015.53003.
  • Shia J, Schultz N, Kuk D, et al. Morphological characterization of colorectal cancers in the cancer genome atlas reveals distinct morphology-molecular associations: clinical and biological implications. Mod Pathol. 2017;30(4):599–609. doi: 10.1038/modpathol.2016.198.
  • Betge J, Schneider NI, Harbaum L, et al. Muc1, Muc2, Muc5ac, and Muc6 in colorectal cancer: expression profiles and clinical significance. Virchows Arch. 2016;469(3):255–265. doi: 10.1007/s00428-016-1970-5.
  • Karahan B, Argon A, Yıldırım M, et al. Relationship between mlh-1, msh-2, pms-2,msh-6 expression and clinicopathological features in colorectal cancer. Int J Clin Exp Pathol. 2015;8(4):4044–4053.
  • McMullen TP, Lai R, Dabbagh L, et al. Survival in rectal cancer is predicted by T cell infiltration of tumour-associated lymphoid nodules. Clin Exp Immunol. 2010;161(1):81–88. doi: 10.1111/j.365-2249.010.04147.x.
  • Gulubova M, Aleksandrova E, Vlaykova T. Promoter polymorphisms in Tgfb1 and Il10 genes influence tumor dendritic cells infiltration, development and prognosis of colorectal cancer. J Gene Med. 2018;20(2–3):e3005. doi: 10.1002/jgm.3005.