415
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Overexpression of GhSWEET42, a SWEET-like gene from cotton, enhances the oil content and seed size

, , , , &
Article: 2266529 | Received 14 Jun 2023, Accepted 29 Sep 2023, Published online: 08 Oct 2023

References

  • Lima LF, Oliveira JO, Carneiro JNP, et al. Ethnobotanical and antimicrobial activities of the gossypium (cotton) genus: a review. J Ethnopharmacol. 2021;279:1. doi: 10.1016/j.jep.2021.114363.
  • Wendel JF, Brubaker C, Alvarez I, et al. Evolution and natural history of the cotton genus. In: Genetics and Genomics of Cotton. Vol.3. New York (NY): Springer; 2009. p. 22.
  • Chakravarthy VS, Reddy TP, Reddy VD, et al. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment. Crit Rev Biotechnol. 2014;34(2):144–10. doi: 10.3109/07388551.2012.743502.
  • Zhang T, Xuan L, Ma Y, et al. Cotton heterosis and hybrid cultivar development. Theor Appl Genet. 2023;136(4):89. doi: 10.1007/s00122-023-04334-w.
  • Xu Z, Li J, Guo X, et al. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference. Sci Rep. 2016;6(1):33342. doi: 10.1038/srep33342.
  • Gao X, Guo H, Zhang Q, et al. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep. 2020;10(1):2084. doi: 10.1038/s41598-020-59180-3.
  • Jan M, Liu Z, Guo C, et al. Molecular regulation of cotton fiber development: a review. Int J Mol Sci. 2022;23(9):5004. doi: 10.3390/ijms23095004.
  • Zia MA, Shah SH, Shoukat S, et al. Physicochemical features, functional characteristics, and health benefits of cottonseed oil: a review. Braz J Biol. 2021;82:e243511. doi: 10.1590/1519-6984.243511.
  • Lu C, Napier JA, Clemente TE, et al. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial ­applications. Curr Opin Biotechnol. 2011;22(2):252–259. doi: 10.1016/j.copbio.2010.11.006.
  • Liu Q, Singh S, Chapman K, et al. Bridging traditional and molecular genetics in modifying cottonseed oil. In: Plant genetics and genomics: crops and models. New York (NY): Springer; 2009; p. 353–382.
  • Zhao Y, Wang Y, Huang Y, et al. Gene network of oil accumulation reveals expression profiles in developing embryos and fatty acid composition in upland cotton. J Plant Physiol. 2018;228:101–112. doi: 10.1016/j.jplph.2018.06.002.
  • Daniel DR, Thompson LD, Shriver BJ, et al. Nonhydrogenated cottonseed oil can be used as a deep fat frying medium to reduce trans-fatty acid content in french fries. J Am Diet Assoc. 2005;105(12):1927–1932. doi: 10.1016/j.jada.2005.09.029.
  • Davis KE, Prasad C, Imrhan V. Consumption of a diet rich in cottonseed oil (CSO) lowers total and LDL cholesterol in normo-cholesterolemic subjects. Nutrients. 2012;4(7):602–610. doi: 10.3390/nu4070602.
  • Honicky M, Cardoso SM, de Lima LRA, et al. Added sugar and trans fatty acid intake and sedentary behavior were associated with excess total-body and central adiposity in children and adolescents with congenital heart disease. Pediatr Obes. 2020;15(6):e12623. doi: 10.1111/ijpo.12623.
  • Cao H, Sethumadhavan K, Wu X, et al. Cottonseed extracts regulate gene expression in human Colon cancer cells. Sci Rep. 2022;12(1):1039. doi: 10.1038/s41598-022-05030-3.
  • Demirbas A. Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions. Bioresour Technol. 2008;99(5):1125–1130. doi: 10.1016/j.biortech.2007.02.024.
  • Fan X, Chen F, Wang X. Ultrasound-assisted synthesis of biodiesel from crude cottonseed oil using response surface methodology. J Oleo Sci. 2010;59(5):235–241. doi: 10.5650/jos.59.235.
  • Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008;54(4):593–607. doi: 10.1111/j.1365-313X.2008.03442.x.
  • Vicente G, Martinez M, Aracil J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol. 2004;92(3):297–305. doi: 10.1016/j.biortech.2003.08.014.
  • Qian J, Wang F, Liu S, et al. In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresour Technol. 2008;99(18):9009–9012. , doi: 10.1016/j.biortech.2008.04.059.
  • Meneghetti SMP, Meneghetti MR, Serra TM, et al. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energy Fuels. 2007;21(6):3746–3747. doi: 10.1021/ef070039q.
  • Hill J, Nelson E, Tilman D, et al. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A. 2006;103(30):11206–11210. doi: 10.1073/pnas.0604600103.
  • Tian Y, Lv X, Xie G, et al. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis. Biochem Biophys Res Commun. 2018;500(2):370–375. doi: 10.1016/j.bbrc.2018.04.081.
  • Bates PD, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol. 2013;16(3):358–364. doi: 10.1016/j.pbi.2013.02.015.
  • Wang N, Ma J, Pei W, et al. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genom. 2017;18(1):218. doi: 10.1186/s12864-017-3594-9.
  • Cui Y, Liu Z, Zhao Y, et al. Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in upland cotton. Plant Mol Biol Rep. 2017;35(2):287–297. doi: 10.1007/s11105-016-1022-y.
  • Zang X, Pei W, Wu M, et al. Genome-scale analysis of the WRI-like family in gossypium and functional characterization of GhWRI1a controlling triacylglycerol content. Front Plant Sci. 2018;9:1516. doi: 10.3389/fpls.2018.01516.
  • Zang X, Geng X, Ma L, et al. A genome-wide analysis of the phospholipid: diacylglycerol acyltransferase gene family in gossypium. BMC Genom. 2019;20(1):402. doi: 10.1186/s12864-019-5728-8.
  • Zhu D, Le Y, Zhang R, et al. A global survey of the gene network and key genes for oil accumulation in cultivated tetraploid cottons. Plant Biotechnol J. 2021;19(6):1170–1182. doi: 10.1111/pbi.13538.
  • Ji J, Yang L, Fang Z, et al. Plant SWEET family of sugar transporters: structure, evolution and biological functions. Biomolecules. 2022;12(2):205. doi: 10.3390/biom12020205.
  • Ruan Y. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65:33–67. doi: 10.1146/annurev-arplant-050213-040251.
  • Chen L, Lin I, Qu X, et al. A Cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell. 2015;27(3):607–619. doi: 10.1105/tpc.114.134585.
  • Wang S, Liu S, Wang J, et al. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev. 2020;7(11):1776–1786. doi: 10.1093/nsr/nwaa110.
  • Li W, Ren Z, Wang Z, et al. Evolution and stress responses of Gossypium hirsutum SWEET genes. Int J Mol Sci. 2018;19(3):769. doi: 10.3390/ijms19030769.
  • Zhang Y, Yao W, Wang F, et al. AGC protein kinase AGC1-4 mediates seed size in Arabidopsis. Plant Cell Rep. 2020;39(6):825–837. doi: 10.1007/s00299-020-02533-z.
  • Wang J, Zhang M, Dong R, et al. Heterologous expression of ZmGS5 enhances organ size and seed weight by regulating cell expansion in Arabidopsis thaliana. Gene. 2021;793:145749. doi: 10.1016/j.gene.2021.145749.
  • Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x.
  • Li Y, Beisson F, Pollard M, et al. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry. 2006;67(9):904–915. doi: 10.1016/j.phytochem.2006.02.015.
  • Shockey J, Regmi A, Cotton K, et al. Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis. Plant Physiol. 2016;170(1):163–179. doi: 10.1104/pp.15.01563.
  • Lee HG, Seo PJ. Interaction of DGAT1 and PDAT1 to enhance TAG assembly in Arabidopsis. Plant Signal Behav. 2019;14(1):1554467. doi: 10.1080/15592324.2018.1554467.
  • Zhang M, Fan J, Taylor DC, et al. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell. 2009;21(12):3885–3901. doi: 10.1105/tpc.109.071795.
  • Pan X, Siloto RMP, Wickramarathna AD, et al. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin. J Biol Chem. 2013;288(33):24173–24188. doi: 10.1074/jbc.M113.475699.
  • Moreno-Pérez AJ, Venegas-Calerón M, Vaistij FE, et al. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta. 2012;235(3):629–639. doi: 10.1007/s00425-011-1534-5.
  • Belide S, Petrie JR, Shrestha P, et al. Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Front Plant Sci. 2012;3:168. doi: 10.3389/fpls.2012.00168.
  • Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 2016;35(5):949–965. doi: 10.1007/s00299-016-1948-4.
  • Bai Y, Jing G, Zhou J, et al. Overexpression of soybean GmPLD gamma enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis. Plant Sci. 2020;290:110298. doi: 10.1016/j.plantsci.2019.110298.
  • Zhang Y, He J. Sugar-induced plant growth is dependent on brassinosteroids. Plant Signal Behav. 2015;10(12):e1082700. doi: 10.1080/15592324.2015.1082700.
  • Chen L, Qu X, Hou B, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335(6065):207–211. doi: 10.1126/science.1213351.
  • Hamada M, Wada S, Kobayashi K, et al. Ci-Rga, a gene encoding an MtN3/saliva family transmembrane protein, is essential for tissue differentiation during embryogenesis of the ascidian Ciona intestinalis. Differentiation. 2005;73(7):364–376. doi: 10.1111/j.1432-0436.2005.00037.x.
  • Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant. 2013;6(3):665–674. doi: 10.1093/mp/sst035.
  • Czumaj A, Śledziński T. Biological role of unsaturated fatty acid desaturases in health and disease. Nutrients. 2020;12(2):356. doi: 10.3390/nu12020356.
  • Yu YH, Ginsberg HN. The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism. Ann Med. 2004;36(4):252–261. doi: 10.1080/07853890410028429.
  • Kim HU, Lee K-R, Go YS, et al. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol. 2011;52(6):983–993. doi: 10.1093/pcp/pcr051.
  • Liu Z, Li N, Zhang Y, et al. Transcriptional repression of GIF1 by the KIX-PPD-MYC repressor complex controls seed size in Arabidopsis. Nat Commun. 2020;11(1):1846. doi: 10.1038/s41467-020-15603-3.
  • Yang S, Huang L, Song J, et al. Genome-Wide analysis of DA1-Like genes in Gossypium and functional characterization of GhDA1-1A controlling seed size. Front Plant Sci. 2021;12:647091. doi: 10.3389/fpls.2021.647091.